269 research outputs found

    Structured Dispersion Matrices From Division Algebra Codes for Space-Time Shift Keying

    No full text
    We propose a novel method of constructing Dispersion Matrices (DM) for Coherent Space-Time Shift Keying (CSTSK) relying on arbitrary PSK signal sets by exploiting codes from division algebras. We show that classic codes from Cyclic Division Algebras (CDA) may be interpreted as DMs conceived for PSK signal sets. Hence various benefits of CDA codes such as their ability to achieve full diversity are inherited by CSTSK. We demonstrate that the proposed CDA based DMs are capable of achieving a lower symbol error ratio than the existing DMs generated using the capacity as their optimization objective function for both perfect and imperfect channel estimation

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    A Comparison Study of LDPC and BCH Codes

    Get PDF
    The need for efficient and reliable digital data communication systems has been rising rapidly in recent years. There are various reasons that have brought this need for the communication systems, among them are the increase in automatic data processing equipment and the increased need for long range communication. Therefore, the LDPC and BCH codes were developed for achieving more reliable data transmission in communication systems. This project covers the research about the LDPC and BCH error correction codes. Algorithm for simulating both the LDPC and BCH codes were also being investigated, which includes generating the parity check matrix, generating the message code in Galois array matrix, encoding the message bits, modulation and decoding the message bits for LDPC. Matlab software is used for encoding and decoding the codes. The percentage of accuracy for LDPC simulation codes are ranging from 95% to 99%. The results obtained shows that the LDPC codes are more efficient and reliable than the BCH codes coding method of error correction because the LDPC codes had a channel performance very close to the Shannon limit. LDPC codes are a class of linear block codes that are proving to be the best performing forward error correction available. Markets such as broadband wireless and mobile networks operate in noisy environments and need powerful error correction in order to improve reliability and better data rates. Through LDPC and BCH codes, these systems can operate more reliably, efficiently and at higher data rates

    Peak-to-Mean Power Control in OFDM, Golay Complementary Sequences, and Reed–Muller Codes

    Get PDF
    We present a range of coding schemes for OFDM transmission using binary, quaternary, octary, and higher order modulation that give high code rates for moderate numbers of carriers. These schemes have tightly bounded peak-to-mean envelope power ratio (PMEPR) and simultaneously have good error correction capability. The key theoretical result is a previously unrecognized connection between Golay complementary sequences and second-order Reed–Muller codes over alphabets ℤ2h. We obtain additional flexibility in trading off code rate, PMEPR, and error correction capability by partitioning the second-order Reed–Muller code into cosets such that codewords with large values of PMEPR are isolated. For all the proposed schemes we show that encoding is straightforward and give an efficient decoding algorithm involving multiple fast Hadamard transforms. Since the coding schemes are all based on the same formal generator matrix we can deal adaptively with varying channel constraints and evolving system requirements

    Space-division Multiplexed Optical Transmission enabled by Advanced Digital Signal Processing

    Get PDF

    Spatial Modulation for Generalized MIMO:Challenges, Opportunities, and Implementation

    Get PDF
    A key challenge of future mobile communication research is to strike an attractive compromise between wireless network's area spectral efficiency and energy efficiency. This necessitates a clean-slate approach to wireless system design, embracing the rich body of existing knowledge, especially on multiple-input-multiple-output (MIMO) technologies. This motivates the proposal of an emerging wireless communications concept conceived for single-radio-frequency (RF) large-scale MIMO communications, which is termed as SM. The concept of SM has established itself as a beneficial transmission paradigm, subsuming numerous members of the MIMO system family. The research of SM has reached sufficient maturity to motivate its comparison to state-of-the-art MIMO communications, as well as to inspire its application to other emerging wireless systems such as relay-aided, cooperative, small-cell, optical wireless, and power-efficient communications. Furthermore, it has received sufficient research attention to be implemented in testbeds, and it holds the promise of stimulating further vigorous interdisciplinary research in the years to come. This tutorial paper is intended to offer a comprehensive state-of-the-art survey on SM-MIMO research, to provide a critical appraisal of its potential advantages, and to promote the discussion of its beneficial application areas and their research challenges leading to the analysis of the technological issues associated with the implementation of SM-MIMO. The paper is concluded with the description of the world's first experimental activities in this vibrant research field
    corecore