7,329 research outputs found

    A Neural Model of How Horizontal and Interlaminar Connections of Visual Cortex Develop into Adult Circuits that Carry Out Perceptual Grouping and Learning

    Full text link
    A neural model suggests how horizontal and interlaminar connections in visual cortical areas Vl and V2 develop within a laminar cortical architecture and give rise to adult visual percepts. The model suggests how mechanisms that control cortical development in the infant lead to properties of adult cortical anatomy, neurophysiology, and visual perception. The model clarifies how excitatory and inhibitory connections can develop stably by maintaining a balance between excitation and inhibition. The growth of long-range excitatory horizontal connections between layer 2/3 pyramidal cells is balanced against that of short-range disynaptic interneuronal connections. The growth of excitatory on-center connections from layer 6-to-4 is balanced against that of inhibitory interneuronal off-surround connections. These balanced connections interact via intracortical and intercortical feedback to realize properties of perceptual grouping, attention, and perceptual learning in the adult, and help to explain the observed variability in the number and temporal distribution of spikes emitted by cortical neurons. The model replicates cortical point spread functions and psychophysical data on the strength of real and illusory contours. The on-center off-surround layer 6-to-4 circuit enables top-clown attentional signals from area V2 to modulate, or attentionally prime, layer 4 cells in area Vl without fully activating them. This modulatory circuit also enables adult perceptual learning within cortical area Vl and V2 to proceed in a stable way.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Linking Visual Cortical Development to Visual Perception

    Full text link
    Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333); Office of Naval Research (N00014-95-1-0657

    Dynamical Mean Field approximation of a canonical cortical model for studying inter-population synchrony

    Get PDF
    The goal of this paper is twofold. We propose and explore a model to study the synchronization among populations in the canonical model of the neocortex proposed previously by (R.J. Douglas, K.A.C. Martin, A functional microcircuit for cat visual cortex. J.Physiol. 440(1991) 735–769). For this, a model describing N synapses of each m-population (m = 1, 2,3) is proposed. Each synapse is described by a system of 2 stochastic differential equations (SDEs). Then, by using the dynamical mean field approximation (DMA) (H. Hasegawa, Dynamical mean-field theory of spiking neuron ensembles: Response to a single spike with independent noises, Phys. Rev. E. (2003)1-19.) the system of several SDEs is reduced to 12 ordinary differential equations for the means and the second-order moments of global variables. The connectivity among populations is obtained by summarizing in the canonical model the detailed information from a quantitative description of the circuits formed in cat area 17 given in (T.Binzegger, R.J. Douglas, K.A. Martin, A Quantitative Map of the Circuit of Cat Primary Visual Cortex, J. Neurosci. 24 (2004) 8441- 8453). In the framework of the used DMA we propose a measure for inter-population synchronization. Simulations are carried out for exploring how inter-population synchrony is related to the variation of firing frequency of each population. Our results suggest that superficial pyramidal clusters appear to have a predominant influence on the synchronization process among pyramidal populations as well as put forward the active role of inhibition in the rest of the synchronizations between populations

    Effects of Noise in a Cortical Neural Model

    Full text link
    Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.
    • …
    corecore