1,007 research outputs found

    Effective Evaluation using Logged Bandit Feedback from Multiple Loggers

    Full text link
    Accurately evaluating new policies (e.g. ad-placement models, ranking functions, recommendation functions) is one of the key prerequisites for improving interactive systems. While the conventional approach to evaluation relies on online A/B tests, recent work has shown that counterfactual estimators can provide an inexpensive and fast alternative, since they can be applied offline using log data that was collected from a different policy fielded in the past. In this paper, we address the question of how to estimate the performance of a new target policy when we have log data from multiple historic policies. This question is of great relevance in practice, since policies get updated frequently in most online systems. We show that naively combining data from multiple logging policies can be highly suboptimal. In particular, we find that the standard Inverse Propensity Score (IPS) estimator suffers especially when logging and target policies diverge -- to a point where throwing away data improves the variance of the estimator. We therefore propose two alternative estimators which we characterize theoretically and compare experimentally. We find that the new estimators can provide substantially improved estimation accuracy.Comment: KDD 201

    Cost-Effective Incentive Allocation via Structured Counterfactual Inference

    Full text link
    We address a practical problem ubiquitous in modern marketing campaigns, in which a central agent tries to learn a policy for allocating strategic financial incentives to customers and observes only bandit feedback. In contrast to traditional policy optimization frameworks, we take into account the additional reward structure and budget constraints common in this setting, and develop a new two-step method for solving this constrained counterfactual policy optimization problem. Our method first casts the reward estimation problem as a domain adaptation problem with supplementary structure, and then subsequently uses the estimators for optimizing the policy with constraints. We also establish theoretical error bounds for our estimation procedure and we empirically show that the approach leads to significant improvement on both synthetic and real datasets

    Reinforcement Learning for Machine Translation: from Simulations to Real-World Applications

    Get PDF
    If a machine translation is wrong, how we can tell the underlying model to fix it? Answering this question requires (1) a machine learning algorithm to define update rules, (2) an interface for feedback to be submitted, and (3) expertise on the side of the human who gives the feedback. This thesis investigates solutions for machine learning updates, the suitability of feedback interfaces, and the dependency on reliability and expertise for different types of feedback. We start with an interactive online learning scenario where a machine translation (MT) system receives bandit feedback (i.e. only once per source) instead of references for learning. Policy gradient algorithms for statistical and neural MT are developed to learn from absolute and pairwise judgments. Our experiments on domain adaptation with simulated online feedback show that the models can largely improve under weak feedback, with variance reduction techniques being very effective. In production environments offline learning is often preferred over online learning. We evaluate algorithms for counterfactual learning from human feedback in a study on eBay product title translations. Feedback is either collected via explicit star ratings from users, or implicitly from the user interaction with cross-lingual product search. Leveraging implicit feedback turns out to be more successful due to lower levels of noise. We compare the reliability and learnability of absolute Likert-scale ratings with pairwise preferences in a smaller user study, and find that absolute ratings are overall more effective for improvements in down-stream tasks. Furthermore, we discover that error markings provide a cheap and practical alternative to error corrections. In a generalized interactive learning framework we propose a self-regulation approach, where the learner, guided by a regulator module, decides which type of feedback to choose for each input. The regulator is reinforced to find a good trade-off between supervision effect and cost. In our experiments, it discovers strategies that are more efficient than active learning and standard fully supervised learning
    • …
    corecore