659 research outputs found

    NTRU in Quaternion Algebras of Bounded Discriminant

    Get PDF
    The NTRU assumption provides one of the most prominent problems on which to base post-quantum cryptography. Because of the efficiency and security of NTRU-style schemes, structured variants have been proposed, using modules. In this work, we create a structured form of NTRU using lattices obtained from orders in cyclic division algebras of index 2, that is, from quaternion algebras. We present a public-key encryption scheme, and show that its public keys are statistically close to uniform. We then prove IND-CPA security of a variant of our scheme when the discriminant of the quaternion algebra is not too large, assuming the hardness of Learning with Errors in cyclic division algebras

    Correlated Pseudorandomness from the Hardness of Quasi-Abelian Decoding

    Full text link
    Secure computation often benefits from the use of correlated randomness to achieve fast, non-cryptographic online protocols. A recent paradigm put forth by Boyle et al.\textit{et al.} (CCS 2018, Crypto 2019) showed how pseudorandom correlation generators (PCG) can be used to generate large amounts of useful forms of correlated (pseudo)randomness, using minimal interactions followed solely by local computations, yielding silent secure two-party computation protocols (protocols where the preprocessing phase requires almost no communication). An additional property called programmability allows to extend this to build N-party protocols. However, known constructions for programmable PCG's can only produce OLE's over large fields, and use rather new splittable Ring-LPN assumption. In this work, we overcome both limitations. To this end, we introduce the quasi-abelian syndrome decoding problem (QA-SD), a family of assumptions which generalises the well-established quasi-cyclic syndrome decoding assumption. Building upon QA-SD, we construct new programmable PCG's for OLE's over any field Fq\mathbb{F}_q with q>2q>2. Our analysis also sheds light on the security of the ring-LPN assumption used in Boyle et al.\textit{et al.} (Crypto 2020). Using our new PCG's, we obtain the first efficient N-party silent secure computation protocols for computing general arithmetic circuit over Fq\mathbb{F}_q for any q>2q>2.Comment: This is a long version of a paper accepted at CRYPTO'2

    Application of Automorphic Forms to Lattice Problems

    Get PDF
    In this paper, we propose a new approach to the study of lattice problems used in cryptography. We specifically focus on module lattices of a fixed rank over some number field. An essential question is the hardness of certain computational problems on such module lattices, as the additional structure may allow exploitation. The fundamental insight is the fact that the collection of those lattices are quotients of algebraic manifolds by arithmetic subgroups. Functions on these spaces are studied in mathematics as part of number theory. In particular, those form a module over the Hecke algebra associated with the general linear group. We use results on these function spaces to define a class of distributions on the space of lattices. Using the Hecke algebra, we define Hecke operators associated with collections of prime ideals of the number field and show a criterion on distributions to converge to the uniform distribution, if the Hecke operators are applied to the chosen distribution. Our approach is motivated by the work of de Boer, Ducas, Pellet-Mary, and Wesolowski (CRYPTO\u2720) on self-reduction of ideal lattices via Arakelov divisors

    Acta Cybernetica : Volume 18. Number 4.

    Get PDF

    Workshop on Database Programming Languages

    Get PDF
    These are the revised proceedings of the Workshop on Database Programming Languages held at Roscoff, Finistère, France in September of 1987. The last few years have seen an enormous activity in the development of new programming languages and new programming environments for databases. The purpose of the workshop was to bring together researchers from both databases and programming languages to discuss recent developments in the two areas in the hope of overcoming some of the obstacles that appear to prevent the construction of a uniform database programming environment. The workshop, which follows a previous workshop held in Appin, Scotland in 1985, was extremely successful. The organizers were delighted with both the quality and volume of the submissions for this meeting, and it was regrettable that more papers could not be accepted. Both the stimulating discussions and the excellent food and scenery of the Brittany coast made the meeting thoroughly enjoyable. There were three main foci for this workshop: the type systems suitable for databases (especially object-oriented and complex-object databases,) the representation and manipulation of persistent structures, and extensions to deductive databases that allow for more general and flexible programming. Many of the papers describe recent results, or work in progress, and are indicative of the latest research trends in database programming languages. The organizers are extremely grateful for the financial support given by CRAI (Italy), Altaïr (France) and AT&T (USA). We would also like to acknowledge the organizational help provided by Florence Deshors, Hélène Gans and Pauline Turcaud of Altaïr, and by Karen Carter of the University of Pennsylvania

    Complex event types for agent-based simulation

    Get PDF
    This thesis presents a novel formal modelling language, complex event types (CETs), to describe behaviours in agent-based simulations. CETs are able to describe behaviours at any computationally represented level of abstraction. Behaviours can be specified both in terms of the state transition rules of the agent-based model that generate them and in terms of the state transition structures themselves. Based on CETs, novel computational statistical methods are introduced which allow statistical dependencies between behaviours at different levels to be established. Different dependencies formalise different probabilistic causal relations and Complex Systems constructs such as ‘emergence’ and ‘autopoiesis’. Explicit links are also made between the different types of CET inter-dependency and the theoretical assumptions they represent. With the novel computational statistical methods, three categories of model can be validated and discovered: (i) inter-level models, which define probabilistic dependencies between behaviours at different levels; (ii) multi-level models, which define the set of simulations for which an inter-level model holds; (iii) inferred predictive models, which define latent relationships between behaviours at different levels. The CET modelling language and computational statistical methods are then applied to a novel agent-based model of Colonic Cancer to demonstrate their applicability to Complex Systems sciences such as Systems Biology. This proof of principle model provides a framework for further development of a detailed integrative model of the system, which can progressively incorporate biological data from different levels and scales as these become available
    • …
    corecore