1,063 research outputs found

    An End-to-End Trainable Neural Network Model with Belief Tracking for Task-Oriented Dialog

    Full text link
    We present a novel end-to-end trainable neural network model for task-oriented dialog systems. The model is able to track dialog state, issue API calls to knowledge base (KB), and incorporate structured KB query results into system responses to successfully complete task-oriented dialogs. The proposed model produces well-structured system responses by jointly learning belief tracking and KB result processing conditioning on the dialog history. We evaluate the model in a restaurant search domain using a dataset that is converted from the second Dialog State Tracking Challenge (DSTC2) corpus. Experiment results show that the proposed model can robustly track dialog state given the dialog history. Moreover, our model demonstrates promising results in producing appropriate system responses, outperforming prior end-to-end trainable neural network models using per-response accuracy evaluation metrics.Comment: Published at Interspeech 201

    Spectral decomposition method of dialog state tracking via collective matrix factorization

    Get PDF
    The task of dialog management is commonly decomposed into two sequential subtasks: dialog state tracking and dialog policy learning. In an end-to-end dialog system, the aim of dialog state tracking is to accurately estimate the true dialog state from noisy observations produced by the speech recognition and the natural language understanding modules. The state tracking task is primarily meant to support a dialog policy. From a probabilistic perspective, this is achieved by maintaining a posterior distribution over hidden dialog states composed of a set of context dependent variables. Once a dialog policy is learned, it strives to select an optimal dialog act given the estimated dialog state and a defined reward function. This paper introduces a novel method of dialog state tracking based on a bilinear algebric decomposition model that provides an efficient inference schema through collective matrix factorization. We evaluate the proposed approach on the second Dialog State Tracking Challenge (DSTC-2) dataset and we show that the proposed tracker gives encouraging results compared to the state-of-the-art trackers that participated in this standard benchmark. Finally, we show that the prediction schema is computationally efficient in comparison to the previous approaches
    • …
    corecore