405 research outputs found

    Combining Dense Nonrigid Structure from Motion and 3D Morphable Models for Monocular 4D Face Reconstruction

    Get PDF
    This is the author accepted manuscript. The final version is available from ACM via the DOI in this record Monocular 4D face reconstruction is a challenging problem, especially in the case that the input video is captured under unconstrained conditions, i.e. "in the wild". The majority of the state-of-the-art approaches build upon 3D Morphable Modelling (3DMM), which has been proven to be more robust than model-free approaches such as Shape from Shading (SfS) or Structure from Motion (SfM). While offering visually plausible shape reconstruction results that resemble real faces, 3DMMs adhere to the model space learned from exemplar faces during the training phase, often yielding facial reconstructions that are excessively smooth and look too similar even across captured faces with completely different facial characteristics. This is due to the fact that 3DMMs are typically used as hard constraints on the reconstructed 3D shape. To overcome these limitations, in this paper we propose to combine 3DMMs with Dense Nonrigid Structure from Motion (DNSM), which is much less robust but has the potential of reconstructing fine details and capturing the subject-specific facial characteristics of every input. We effectively combine the best of both worlds by introducing a novel dense variational framework, which we solve efficiently by designing a convex optimisation strategy. In contrast to previous methods, we incorporate 3DMM as a soft constraint, penalizing both departure of reconstructed faces from the 3DMM subspace and variation of the identity component of the 3DMM over different frames of the input video. As demonstrated in qualitative and quantitative experiments, our method is robust, accurately estimates the 3D facial shape over time and outperforms other state-of-the-art methods of 4D face reconstruction

    Photometric Depth Super-Resolution

    Full text link
    This study explores the use of photometric techniques (shape-from-shading and uncalibrated photometric stereo) for upsampling the low-resolution depth map from an RGB-D sensor to the higher resolution of the companion RGB image. A single-shot variational approach is first put forward, which is effective as long as the target's reflectance is piecewise-constant. It is then shown that this dependency upon a specific reflectance model can be relaxed by focusing on a specific class of objects (e.g., faces), and delegate reflectance estimation to a deep neural network. A multi-shot strategy based on randomly varying lighting conditions is eventually discussed. It requires no training or prior on the reflectance, yet this comes at the price of a dedicated acquisition setup. Both quantitative and qualitative evaluations illustrate the effectiveness of the proposed methods on synthetic and real-world scenarios.Comment: IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019. First three authors contribute equall

    Improving shape from shading with interactive Tabu search

    Get PDF
    Optimisation based shape from shading (SFS) is sensitive to initialization: errors in initialization are a significant cause of poor overall shape reconstruction. In this paper, we present a method to help overcome this problem by means of user interaction. There are two key elements in our method. Firstly, we extend SFS to consider a set of initializations, rather than to use a single one. Secondly, we efficiently explore this initialization space using a heuristic search method, tabu search, guided by user evaluation of the reconstruction quality. Reconstruction results on both synthetic and real images demonstrate the effectiveness of our method in providing more desirable shape reconstructions

    PDE-based vs. variational methods for perspective shape from shading

    Get PDF

    Two Simple Yet Effective Strategies for Avoiding Over-Smoothing in SFS Problem

    Get PDF
    Minimization techniques are widely used for retrieving a 3D surface starting from a single shaded image i.e., for solving the shape from shading problem. Such techniques are based on the assumption that expected surface to be retrieved coincides with the one that minimize a properly developed functional, consisting of several contributions. Among the possible contributes defining the functional, the so called "smoothness constraint" is always used since it guides the convergence of the minimization process towards a more accurate solution. Unfortunately, in areas where actually brightness changes rapidly, it also introduces an undesired over-smoothing effect. The present work proposes two simple yet effective strategies for avoiding the typical over-smoothing effect, with regards to the image regions in which this effect is particularly undesired (e.g., areas where surface details are to be preserved in the reconstruction). Tested against a set of case studies the strategies prove to outperform traditional SFS-based methods

    Editing faces in videos

    Get PDF
    Editing faces in movies is of interest in the special effects industry. We aim at producing effects such as the addition of accessories interacting correctly with the face or replacing the face of a stuntman with the face of the main actor. The system introduced in this thesis is based on a 3D generative face model. Using a 3D model makes it possible to edit the face in the semantic space of pose, expression, and identity instead of pixel space, and due to its 3D nature allows a modelling of the light interaction. In our system we first reconstruct the 3D face, which is deforming because of expressions and speech, the lighting, and the camera in all frames of a monocular input video. The face is then edited by substituting expressions or identities with those of another video sequence or by adding virtual objects into the scene. The manipulated 3D scene is rendered back into the original video, correctly simulating the interaction of the light with the deformed face and virtual objects. We describe all steps necessary to build and apply the system. This includes registration of training faces to learn a generative face model, semi-automatic annotation of the input video, fitting of the face model to the input video, editing of the fit, and rendering of the resulting scene. While describing the application we introduce a host of new methods, each of which is of interest on its own. We start with a new method to register 3D face scans to use as training data for the face model. For video preprocessing a new interest point tracking and 2D Active Appearance Model fitting technique is proposed. For robust fitting we introduce background modelling, model-based stereo techniques, and a more accurate light model
    • …
    corecore