81,116 research outputs found

    Structure-Preserved Unsupervised Domain Adaptation

    Get PDF
    Domain adaptation has been a primal approach to addressing the issues by lack of labels in many data mining tasks. Although considerable efforts have been devoted to domain adaptation with promising results, most existing work learns a classifier on a source domain and then predicts the labels for target data, where only the instances near the boundary determine the hyperplane and the whole structure information is ignored. Moreover, little work has been done regarding to multi-source domain adaptation. To that end, we develop a novel unsupervised domain adaptation framework, which ensures the whole structure of source domains is preserved to guide the target structure learning in a semi-supervised clustering fashion. To our knowledge, this is the first time when the domain adaptation problem is re-formulated as a semi-supervised clustering problem with target labels as missing values. Furthermore, by introducing an augmented matrix, a non-trivial solution is designed, which can be exactly mapped into a K-means-like optimization problem with modified distance function and update rule for centroids in an efficient way. Extensive experiments on several widely-used databases show the substantial improvements of our proposed approach over the state-of-the-art methods

    AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing Flows

    Full text link
    Given datasets from multiple domains, a key challenge is to efficiently exploit these data sources for modeling a target domain. Variants of this problem have been studied in many contexts, such as cross-domain translation and domain adaptation. We propose AlignFlow, a generative modeling framework that models each domain via a normalizing flow. The use of normalizing flows allows for a) flexibility in specifying learning objectives via adversarial training, maximum likelihood estimation, or a hybrid of the two methods; and b) learning and exact inference of a shared representation in the latent space of the generative model. We derive a uniform set of conditions under which AlignFlow is marginally-consistent for the different learning objectives. Furthermore, we show that AlignFlow guarantees exact cycle consistency in mapping datapoints from a source domain to target and back to the source domain. Empirically, AlignFlow outperforms relevant baselines on image-to-image translation and unsupervised domain adaptation and can be used to simultaneously interpolate across the various domains using the learned representation.Comment: AAAI 202

    Optimal Transport for Domain Adaptation

    Get PDF
    Domain adaptation from one data space (or domain) to another is one of the most challenging tasks of modern data analytics. If the adaptation is done correctly, models built on a specific data space become more robust when confronted to data depicting the same semantic concepts (the classes), but observed by another observation system with its own specificities. Among the many strategies proposed to adapt a domain to another, finding a common representation has shown excellent properties: by finding a common representation for both domains, a single classifier can be effective in both and use labelled samples from the source domain to predict the unlabelled samples of the target domain. In this paper, we propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains. We learn a transportation plan matching both PDFs, which constrains labelled samples in the source domain to remain close during transport. This way, we exploit at the same time the few labeled information in the source and the unlabelled distributions observed in both domains. Experiments in toy and challenging real visual adaptation examples show the interest of the method, that consistently outperforms state of the art approaches

    Unsupervised Domain Adaptation: A Multi-task Learning-based Method

    Full text link
    This paper presents a novel multi-task learning-based method for unsupervised domain adaptation. Specifically, the source and target domain classifiers are jointly learned by considering the geometry of target domain and the divergence between the source and target domains based on the concept of multi-task learning. Two novel algorithms are proposed upon the method using Regularized Least Squares and Support Vector Machines respectively. Experiments on both synthetic and real world cross domain recognition tasks have shown that the proposed methods outperform several state-of-the-art domain adaptation methods
    • …
    corecore