11,642 research outputs found

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    A Configuration Management System for Software Product Lines

    Get PDF
    Software product line engineering (SPLE) is a methodology for developing a family of software products in a particular domain by systematic reuse of shared code in order to improve product quality and reduce development time and cost. Currently, there are no software configuration management (SCM) tools that support software product line evolution. Conventional SCM tools are designed to support single product development. The use of conventional SCM tools forces developers to treat a software product line as a single software project by introducing new programming language constructs or using conditional compilation. We propose a research conguration management prototype called Molhado SPL that is designed specifically to support the evolution of software product lines. Molhado SPL addresses the evolution problem at the configuration level instead of at the code level. We studied the type of operations needed to support the evolution of software product lines and proposed a versioning model and eight cases of change propagation. Molhado SPL supports independent evolution of core assets and products, the sharing of code and the tracking relationships between products and shared code, and the eight cases of change propagation. The Molhado SPL consists of four layers with each layer providing a different type of service. At the heart of Molhado SPL are the versioning model, component object, shared component object, and project objects that allow for independent evolution of products and shared artifacts, for sharing, and for supporting change propagation. Furthermore,they allow product specific changes to shared code without interfering with the core asset that is shared. Products can also introduce product specific assets that only exist in that product. In order to for Molhado SPL to support product line, we implemented XML merging, feature model editing and debugging, and version-aware XML documents. To support merging of XML documents, we implemented a 3-way XML document merging algorithm that uses versioned data structures, change detection, and node identity. To support software product line derivation or modeling of software product line, we implemented support for feature model including editing and debugging. Finally, we created the version-aware XML document framework to support collaborative editing of XML documents without requiring a version repository. The version history is embedded in the documents using XML namespaces, so that the documents remain valid under the XML specification. The version-aware XML framework can also be used to support the exporting of documents from Molhado SPL repository to be edit outside and import back the change history made to the document. We evaluated Molhado SPL with two product lines: a document product line and a the graph data structures product line. This evaluation showed that Molhado SPL supports independently evolution of products and core assets and the eight change propagation cases. We did not evaluate MolhadoSPL in terms of scalability or usability. The main contributions of this dissertation research are: 1) Molhado SPL that supports the evolution of product lines, 2) a fast 3-way XML merge algorithm, 3) a version-aware XML document framework, and 4) a feature model editor and debugger

    Management and Visualisation of Non-linear History of Polygonal 3D Models

    Get PDF
    The research presented in this thesis concerns the problems of maintenance and revision control of large-scale three dimensional (3D) models over the Internet. As the models grow in size and the authoring tools grow in complexity, standard approaches to collaborative asset development become impractical. The prevalent paradigm of sharing files on a file system poses serious risks with regards, but not limited to, ensuring consistency and concurrency of multi-user 3D editing. Although modifications might be tracked manually using naming conventions or automatically in a version control system (VCS), understanding the provenance of a large 3D dataset is hard due to revision metadata not being associated with the underlying scene structures. Some tools and protocols enable seamless synchronisation of file and directory changes in remote locations. However, the existing web-based technologies are not yet fully exploiting the modern design patters for access to and management of alternative shared resources online. Therefore, four distinct but highly interconnected conceptual tools are explored. The first is the organisation of 3D assets within recent document-oriented No Structured Query Language (NoSQL) databases. These "schemaless" databases, unlike their relational counterparts, do not represent data in rigid table structures. Instead, they rely on polymorphic documents composed of key-value pairs that are much better suited to the diverse nature of 3D assets. Hence, a domain-specific non-linear revision control system 3D Repo is built around a NoSQL database to enable asynchronous editing similar to traditional VCSs. The second concept is that of visual 3D differencing and merging. The accompanying 3D Diff tool supports interactive conflict resolution at the level of scene graph nodes that are de facto the delta changes stored in the repository. The third is the utilisation of HyperText Transfer Protocol (HTTP) for the purposes of 3D data management. The XML3DRepo daemon application exposes the contents of the repository and the version control logic in a Representational State Transfer (REST) style of architecture. At the same time, it manifests the effects of various 3D encoding strategies on the file sizes and download times in modern web browsers. The fourth and final concept is the reverse-engineering of an editing history. Even if the models are being version controlled, the extracted provenance is limited to additions, deletions and modifications. The 3D Timeline tool, therefore, implies a plausible history of common modelling operations such as duplications, transformations, etc. Given a collection of 3D models, it estimates a part-based correspondence and visualises it in a temporal flow. The prototype tools developed as part of the research were evaluated in pilot user studies that suggest they are usable by the end users and well suited to their respective tasks. Together, the results constitute a novel framework that demonstrates the feasibility of a domain-specific 3D version control

    WFIRST Coronagraph Technology Requirements: Status Update and Systems Engineering Approach

    Full text link
    The coronagraphic instrument (CGI) on the Wide-Field Infrared Survey Telescope (WFIRST) will demonstrate technologies and methods for high-contrast direct imaging and spectroscopy of exoplanet systems in reflected light, including polarimetry of circumstellar disks. The WFIRST management and CGI engineering and science investigation teams have developed requirements for the instrument, motivated by the objectives and technology development needs of potential future flagship exoplanet characterization missions such as the NASA Habitable Exoplanet Imaging Mission (HabEx) and the Large UV/Optical/IR Surveyor (LUVOIR). The requirements have been refined to support recommendations from the WFIRST Independent External Technical/Management/Cost Review (WIETR) that the WFIRST CGI be classified as a technology demonstration instrument instead of a science instrument. This paper provides a description of how the CGI requirements flow from the top of the overall WFIRST mission structure through the Level 2 requirements, where the focus here is on capturing the detailed context and rationales for the CGI Level 2 requirements. The WFIRST requirements flow starts with the top Program Level Requirements Appendix (PLRA), which contains both high-level mission objectives as well as the CGI-specific baseline technical and data requirements (BTR and BDR, respectively)... We also present the process and collaborative tools used in the L2 requirements development and management, including the collection and organization of science inputs, an open-source approach to managing the requirements database, and automating documentation. The tools created for the CGI L2 requirements have the potential to improve the design and planning of other projects, streamlining requirement management and maintenance. [Abstract Abbreviated]Comment: 16 pages, 4 figure

    Novel Techniques For Model-Code Synchronization

    Get PDF
    The orientation of the current software development practice requires efficient model-based iterative solutions. The high costs of maintenance and evolution during the life cycle of the software can be reduced by using tool-aided iterative development. This paper presents how model-based iterative software development can be supported through efficient model-code change propagation. The presented approach facilitates bi-directional synchronization between the modified source code and the refined initial models. The backgrounds of the synchronization technique are three-way abstract syntax tree (AST) differencing and merging. The AST-based solution enables syntactically correct merge operations. OMG's Model-Driven Architecture describes a proposal for platform-specific model creation and source code generation. We extend this vision with the synchronization feature to assist the iterative development. Furthermore, a case study is also provided

    A study of BIM collaboration requirements and available features in existing model collaboration systems

    Get PDF
    Established collaboration practices in the construction industry are document centric and are challenged by the introduction of Building Information Modelling (BIM). Document management collaboration systems (e.g. Extranets) have significantly improved the document collaboration in recent years; however their capabilities for model collaboration are limited and do not support the complex requirements of BIM collaboration. The construction industry is responding to this situation by adopting emerging model collaboration systems (MCS), such as model servers, with the ability to exploit and reuse information directly from the models to extend the current intra-disciplinary collaboration towards integrated multi-disciplinary collaboration on models. The functions of existing MCSs have evolved from the manufacturing industry and there is no concrete study on how these functions correspond to the requirements of the construction industry, especially with BIM requirements. This research has conducted focus group sessions with major industry disciplines to explore the user requirements for BIM collaboration. The research results have been used to categorise and express the features of existing MCS which are then analysed in selected MCS from a user’s perspective. The potential of MCS and the match or gap in user requirements and available model collaboration features is discussed. This study concludes that model collaborative solutions for construction industry users are available in different capacities; however a comprehensive custom built solution is yet to be realized. The research results are useful for construction industry professionals, software developers and researchers involved in exploring collaborative solutions for the construction industry

    Fine-grained revision control for collaborative software development

    Full text link

    Enhanced Version Control for Unconventional Applications

    Get PDF
    The Extensible Markup Language (XML) is widely used to store, retrieve, and share digital documents. Recently, a form of Version Control System has been applied to the language, resulting in Version-Aware XML allowing for enhanced portability and scalability. While Version Control Systems are able to keep track of changes made to documents, we think that there is untapped potential in the technology. In this dissertation, we present novel ways of using Version Control System to enhance the security and performance of existing applications. We present a framework to maintain integrity in offline XML documents and provide non-repudiation security features that are independent of central certificate repositories. In addition, we use Version Control information to enhance the performance of Automated Policy Enforcement eXchange framework (APEX), an existing document security framework developed by Hewlett-Packard (HP) Labs. Finally, we present an interactive and scalable visualization framework to represent Version-Aware-related data that helps users visualize and understand version control data, delete specific revisions of a document, and access a comprehensive overview of the entire versioning history

    Multiple hierarchies : new aspects of an old solution

    Get PDF
    In this paper, we present the Multiple Annotation approach, which solves two problems: the problem of annotating overlapping structures, and the problem that occurs when documents should be annotated according to different, possibly heterogeneous tag sets. This approach has many advantages: it is based on XML, the modeling of alternative annotations is possible, each level can be viewed separately, and new levels can be added at any time. The files can be regarded as an interrelated unit, with the text serving as the implicit link. Two representations of the information contained in the multiple files (one in Prolog and one in XML) are described. These representations serve as a base for several applications
    • 

    corecore