595 research outputs found

    Model-Based Reinforcement Learning for Stochastic Hybrid Systems

    Full text link
    Optimal control of general nonlinear systems is a central challenge in automation. Enabled by powerful function approximators, data-driven approaches to control have recently successfully tackled challenging robotic applications. However, such methods often obscure the structure of dynamics and control behind black-box over-parameterized representations, thus limiting our ability to understand closed-loop behavior. This paper adopts a hybrid-system view of nonlinear modeling and control that lends an explicit hierarchical structure to the problem and breaks down complex dynamics into simpler localized units. We consider a sequence modeling paradigm that captures the temporal structure of the data and derive an expectation-maximization (EM) algorithm that automatically decomposes nonlinear dynamics into stochastic piecewise affine dynamical systems with nonlinear boundaries. Furthermore, we show that these time-series models naturally admit a closed-loop extension that we use to extract local polynomial feedback controllers from nonlinear experts via behavioral cloning. Finally, we introduce a novel hybrid relative entropy policy search (Hb-REPS) technique that incorporates the hierarchical nature of hybrid systems and optimizes a set of time-invariant local feedback controllers derived from a local polynomial approximation of a global state-value function

    Multi-Task Dynamical Systems

    Full text link
    Time series datasets are often composed of a variety of sequences from the same domain, but from different entities, such as individuals, products, or organizations. We are interested in how time series models can be specialized to individual sequences (capturing the specific characteristics) while still retaining statistical power by sharing commonalities across the sequences. This paper describes the multi-task dynamical system (MTDS); a general methodology for extending multi-task learning (MTL) to time series models. Our approach endows dynamical systems with a set of hierarchical latent variables which can modulate all model parameters. To our knowledge, this is a novel development of MTL, and applies to time series both with and without control inputs. We apply the MTDS to motion-capture data of people walking in various styles using a multi-task recurrent neural network (RNN), and to patient drug-response data using a multi-task pharmacodynamic model.Comment: 52 pages, 17 figure

    Multi-Task Dynamical Systems

    Get PDF
    Time series datasets are often composed of a variety of sequences from the same domain, but from different entities, such as individuals, products, or organizations. We are interested in how time series models can be specialized to individual sequences (capturing the specific characteristics) while still retaining statistical power by sharing commonalities across the sequences. This paper describes the multi-task dynamical system (MTDS); a general methodology for extending multi-task learning (MTL) to time series models. Our approach endows dynamical systems with a set of hierarchical latent variables which can modulate all model parameters. To our knowledge, this is a novel development of MTL, and applies to time series both with and without control inputs. We apply the MTDS to motion-capture data of people walking in various styles using a multi-task recurrent neural network (RNN), and to patient drug-response data using a multi-task pharmacodynamic model.Comment: 52 pages, 17 figure

    Probabilistic Models of Motor Production

    Get PDF
    N. Bernstein defined the ability of the central neural system (CNS) to control many degrees of freedom of a physical body with all its redundancy and flexibility as the main problem in motor control. He pointed at that man-made mechanisms usually have one, sometimes two degrees of freedom (DOF); when the number of DOF increases further, it becomes prohibitively hard to control them. The brain, however, seems to perform such control effortlessly. He suggested the way the brain might deal with it: when a motor skill is being acquired, the brain artificially limits the degrees of freedoms, leaving only one or two. As the skill level increases, the brain gradually "frees" the previously fixed DOF, applying control when needed and in directions which have to be corrected, eventually arriving to the control scheme where all the DOF are "free". This approach of reducing the dimensionality of motor control remains relevant even today. One the possibles solutions of the Bernstetin's problem is the hypothesis of motor primitives (MPs) - small building blocks that constitute complex movements and facilitite motor learnirng and task completion. Just like in the visual system, having a homogenious hierarchical architecture built of similar computational elements may be beneficial. Studying such a complicated object as brain, it is important to define at which level of details one works and which questions one aims to answer. David Marr suggested three levels of analysis: 1. computational, analysing which problem the system solves; 2. algorithmic, questioning which representation the system uses and which computations it performs; 3. implementational, finding how such computations are performed by neurons in the brain. In this thesis we stay at the first two levels, seeking for the basic representation of motor output. In this work we present a new model of motor primitives that comprises multiple interacting latent dynamical systems, and give it a full Bayesian treatment. Modelling within the Bayesian framework, in my opinion, must become the new standard in hypothesis testing in neuroscience. Only the Bayesian framework gives us guarantees when dealing with the inevitable plethora of hidden variables and uncertainty. The special type of coupling of dynamical systems we proposed, based on the Product of Experts, has many natural interpretations in the Bayesian framework. If the dynamical systems run in parallel, it yields Bayesian cue integration. If they are organized hierarchically due to serial coupling, we get hierarchical priors over the dynamics. If one of the dynamical systems represents sensory state, we arrive to the sensory-motor primitives. The compact representation that follows from the variational treatment allows learning of a motor primitives library. Learned separately, combined motion can be represented as a matrix of coupling values. We performed a set of experiments to compare different models of motor primitives. In a series of 2-alternative forced choice (2AFC) experiments participants were discriminating natural and synthesised movements, thus running a graphics Turing test. When available, Bayesian model score predicted the naturalness of the perceived movements. For simple movements, like walking, Bayesian model comparison and psychophysics tests indicate that one dynamical system is sufficient to describe the data. For more complex movements, like walking and waving, motion can be better represented as a set of coupled dynamical systems. We also experimentally confirmed that Bayesian treatment of model learning on motion data is superior to the simple point estimate of latent parameters. Experiments with non-periodic movements show that they do not benefit from more complex latent dynamics, despite having high kinematic complexity. By having a fully Bayesian models, we could quantitatively disentangle the influence of motion dynamics and pose on the perception of naturalness. We confirmed that rich and correct dynamics is more important than the kinematic representation. There are numerous further directions of research. In the models we devised, for multiple parts, even though the latent dynamics was factorized on a set of interacting systems, the kinematic parts were completely independent. Thus, interaction between the kinematic parts could be mediated only by the latent dynamics interactions. A more flexible model would allow a dense interaction on the kinematic level too. Another important problem relates to the representation of time in Markov chains. Discrete time Markov chains form an approximation to continuous dynamics. As time step is assumed to be fixed, we face with the problem of time step selection. Time is also not a explicit parameter in Markov chains. This also prohibits explicit optimization of time as parameter and reasoning (inference) about it. For example, in optimal control boundary conditions are usually set at exact time points, which is not an ecological scenario, where time is usually a parameter of optimization. Making time an explicit parameter in dynamics may alleviate this

    Dynamical structure in neural population activity

    Get PDF
    The question of how the collective activity of neural populations in the brain gives rise to complex behaviour is fundamental to neuroscience. At the core of this question lie considerations about how neural circuits can perform computations that enable sensory perception, motor control, and decision making. It is thought that such computations are implemented by the dynamical evolution of distributed activity in recurrent circuits. Thus, identifying and interpreting dynamical structure in neural population activity is a key challenge towards a better understanding of neural computation. In this thesis, I make several contributions in addressing this challenge. First, I develop two novel methods for neural data analysis. Both methods aim to extract trajectories of low-dimensional computational state variables directly from the unbinned spike-times of simultaneously recorded neurons on single trials. The first method separates inter-trial variability in the low-dimensional trajectory from variability in the timing of progression along its path, and thus offers a quantification of inter-trial variability in the underlying computational process. The second method simultaneously learns a low-dimensional portrait of the underlying nonlinear dynamics of the circuit, as well as the system's fixed points and locally linearised dynamics around them. This approach facilitates extracting interpretable low-dimensional hypotheses about computation directly from data. Second, I turn to the question of how low-dimensional dynamical structure may be embedded within a high-dimensional neurobiological circuit with excitatory and inhibitory cell-types. I analyse how such circuit-level features shape population activity, with particular focus on responses to targeted optogenetic perturbations of the circuit. Third, I consider the problem of implementing multiple computations in a single dynamical system. I address this in the framework of multi-task learning in recurrently connected networks and demonstrate that a careful organisation of low-dimensional, activity-defined subspaces within the network can help to avoid interference across tasks

    Building theories of neural circuits with machine learning

    Get PDF
    As theoretical neuroscience has grown as a field, machine learning techniques have played an increasingly important role in the development and evaluation of theories of neural computation. Today, machine learning is used in a variety of neuroscientific contexts from statistical inference to neural network training to normative modeling. This dissertation introduces machine learning techniques for use across the various domains of theoretical neuroscience, and the application of these techniques to build theories of neural circuits. First, we introduce a variety of optimization techniques for normative modeling of neural activity, which were used to evaluate theories of primary motor cortex (M1) and supplementary motor area (SMA). Specifically, neural responses during a cycling task performed by monkeys displayed distinctive dynamical geometries, which motivated hypotheses of how these geometries conferred computational properties necessary for the robust production of cyclic movements. By using normative optimization techniques to predict neural responses encoding muscle activity while ascribing to an “untangled” geometry, we found that minimal tangling was an accurate model of M1. Analyses with trajectory constrained RNNs showed that such an organization of M1 neural activity confers noise robustness, and that minimally “divergent” trajectories in SMA enable the tracking of contextual factors. In the remainder of the dissertation, we focus on the introduction and application of deep generative modeling techniques for theoretical neuroscience. Specifically, both techniques employ recent advancements in approaches to deep generative modeling -- normalizing flows -- to capture complex parametric structure in neural models. The first technique, which is designed for statistical generative models, enables look-up inference in intractable exponential family models. The efficiency of this technique is demonstrated by inferring neural firing rates in a log-gaussian poisson model of spiking responses to drift gratings in primary visual cortex. The second technique is designed for statistical inference in mechanistic models, where the inferred parameter distribution is constrained to produce emergent properties of computation. Once fit, the deep generative model confers analytic tools for quantifying the parametric structure giving rise to emergent properties. This technique was used for novel scientific insight into the nature of neuron-type variability in primary visual cortex and of distinct connectivity regimes of rapid task switching in superior colliculus
    • …
    corecore