20,518 research outputs found

    Temporospatial Context-Aware Vehicular Crash Risk Prediction

    Get PDF
    With the demand for more vehicles increasing, road safety is becoming a growing concern. Traffic collisions take many lives and cost billions of dollars in losses. This explains the growing interest of governments, academic institutions and companies in road safety. The vastness and availability of road accident data has provided new opportunities for gaining a better understanding of accident risk factors and for developing more effective accident prediction and prevention regimes. Much of the empirical research on road safety and accident analysis utilizes statistical models which capture limited aspects of crashes. On the other hand, data mining has recently gained interest as a reliable approach for investigating road-accident data and for providing predictive insights. While some risk factors contribute more frequently in the occurrence of a road accident, the importance of driver behavior, temporospatial factors, and real-time traffic dynamics have been underestimated. This study proposes a framework for predicting crash risk based on historical accident data. The proposed framework incorporates machine learning and data analytics techniques to identify driving patterns and other risk factors associated with potential vehicle crashes. These techniques include clustering, association rule mining, information fusion, and Bayesian networks. Swarm intelligence based association rule mining is employed to uncover the underlying relationships and dependencies in collision databases. Data segmentation methods are employed to eliminate the effect of dependent variables. Extracted rules can be used along with real-time mobility to predict crashes and their severity in real-time. The national collision database of Canada (NCDB) is used in this research to generate association rules with crash risk oriented subsequents, and to compare the performance of the swarm intelligence based approach with that of other association rule miners. Many industry-demanding datasets, including road-accident datasets, are deficient in descriptive factors. This is a significant barrier for uncovering meaningful risk factor relationships. To resolve this issue, this study proposes a knwoledgebase approximation framework to enhance the crash risk analysis by integrating pieces of evidence discovered from disparate datasets capturing different aspects of mobility. Dempster-Shafer theory is utilized as a key element of this knowledgebase approximation. This method can integrate association rules with acceptable accuracy under certain circumstances that are discussed in this thesis. The proposed framework is tested on the lymphography dataset and the road-accident database of the Great Britain. The derived insights are then used as the basis for constructing a Bayesian network that can estimate crash likelihood and risk levels so as to warn drivers and prevent accidents in real-time. This Bayesian network approach offers a way to implement a naturalistic driving analysis process for predicting traffic collision risk based on the findings from the data-driven model. A traffic incident detection and localization method is also proposed as a component of the risk analysis model. Detecting and localizing traffic incidents enables timely response to accidents and facilitates effective and efficient traffic flow management. The results obtained from the experimental work conducted on this component is indicative of the capability of our Dempster-Shafer data-fusion-based incident detection method in overcoming the challenges arising from erroneous and noisy sensor readings

    On the Selection of Meaningful Association Rules

    Get PDF

    Detection of Interesting Traffic Accident Patterns by Association Rule Mining

    Get PDF
    In recent years, the accident rate related to traffic is high. Analyzing the crash data and extracting useful information from it can help in taking respective measures to decrease this rate or prevent the crash from happening. Related research has been done in the past which involved proposing various measures and algorithms to obtain interesting crash patterns from the crash records. The main problem is that large numbers of patterns were produced and vast number of these patterns would be obvious or not interesting. A deeper analysis of the data is required in order to get the interesting patterns. In order to overcome this situation, we have proposed a new approach to detect the most associated sequential patterns in the crash data. We also make use of the technique, “Association Rule Mining” to mine interesting traffic accident patterns from the crash records. The main goal of this research is to detect the most associated sequential patterns (MASP) and mine patterns within the data sets generated by MASP using a modified FP-growth approach in regular association rule mining. We have designed and implemented data structures for efficient implementation of algorithms. The results extracted can be further queried for pattern analysis to get a deeper understanding. Efficient memory management is one of the main objectives during the implementation of the algorithms. Linked list based tree structures have been used for searching the patterns. The results obtained seemed to be very promising and the detected MASPs contained most of the attributes which gave a deeper insight into the crash data and the patterns were found to be very interesting. A prototype application is developed in C# .NET

    Evaluation of Parametric and Nonparametric Statistical Models in Wrong-way Driving Crash Severity Prediction

    Get PDF
    Wrong-way driving (WWD) crashes result in more fatalities per crash, involve more vehicles, and cause extended road closures compared to other types of crashes. Although crashes involving wrong-way drivers are relatively few, they often lead to fatalities and serious injuries. Researchers have been using parametric statistical models to identify factors that affect WWD crash severity. However, these parametric models are generally based on several assumptions, and the results could generate numerous errors and become questionable when these assumptions are violated. On the other hand, nonparametric methods such as data mining or machine learning techniques do not use a predetermined functional form, can address the correlation problem among independent variables, display results graphically, and simplify the potential complex relationship between the variables. The main objective of this research was to demonstrate the applicability of nonparametric statistical models in successfully identifying factors affecting traffic crash severity. To achieve this goal, the performance of parametric and nonparametric statistical models in WWD crash severity prediction was evaluated. The following parametric methods were evaluated: Logistic Regression (LR), Ridge Regression (RR), Least Absolute Shrinkage and Selection Operator (LASSO), Linear Discriminant Analysis (LDA), and Gaussian Naïve Bayes (GNB). The following nonparametric methods were evaluated: Random Forests (RF), Decision Trees (DT), and Support Vector Machine (SVM). The evaluation was based on sensitivity, specificity, and prediction accuracy. The research also demonstrated the applicability of nonparametric supervised learning algorithms on crash severity analysis by combining tree-based data mining techniques and marginal effect analysis to show the correlation between the response and the predictor variables. The analysis was based on 1,475 WWD crashes that occurred on arterial road networks from 2012-2016 in Florida. The results showed that nonparametric models provided better prediction accuracy on predicting serious injury compared to parametric models. By conducting prediction accuracy comparison, contributor variables’ marginal effect analysis, variable importance evaluation, and crash severity pattern recognition analysis, the nonparametric models have been demonstrated to be valid and proved to serve as an alternative tool in transportation safety studies. The results showed that head-on collisions, weekends, high-speed facilities, crashes involving vehicles entering from a driveway, dark-not lighted roadways, older drivers, and driver impairment are important factors that play a crucial role in WWD crash severity on non-limited access facilities. This information may assist researchers and safety engineers in identifying specific strategies to reduce the severity of WWD crashes on arterial streets. Besides unveiling the factors contributing to WWD crash severity and their relationship with each other, this research has demonstrated the potential of using data mining techniques in yielding results that are easily understandable and interpretable

    Data Mining Approach of Accident Occurrences Identification with Effective Methodology and Implementation

    Get PDF
    Data mining is used in various domains of research to identify a new cause for tan effect in the society over the globe. This article includes the same reason for using the data mining to identify the Accident Occurrences in different regions and to identify the most valid reason for happening accidents over the globe. Data Mining and Advanced Machine Learning algorithms are used in this research approach and this article discusses about hyperline, classifications, pre-processing of the data, training the machine with the sample datasets which are collected from different regions in which we have structural and semi-structural data. We will dive into deep of machine learning and data mining classification algorithms to find or predict something novel about the accident occurrences over the globe. We majorly concentrate on two classification algorithms to minify the research and task and they are very basic and important classification algorithms. SVM (Support vector machine), CNB Classifier. This discussion will be quite interesting with WEKA tool for CNB classifier, Bag of Words Identification, Word Count and Frequency Calculation

    Decision Support for Road Safety: Development of Key Performance Indicators for Police Analysts

    Get PDF
    In 2017, five out of 100,000 people were killed by road accidents in Europe. In order to reduce this number with appropriate measures, the police nowadays manually defines combinations of accident attributes (e. g., accidents on slippery road surfaces at night), which then form the basis for tracking the number of accidents over time. The aim of this paper is to combine the following data analysis approaches in order to detect interesting attribute combinations, also referred to as “itemsets”, relevant for current and future observations. The resulting combinations are proposed to the police as new key performance indicators and can also be used directly for planning police measures to increase road safety. A four-stage decision support system is introduced that employs frequent itemset mining in the first stage. The temporal aspect of traffic accident data is illustrated by time series containing, for each itemset, the relative frequencies of accidents with the corresponding attribute combination. In the second step, the time series are grouped according to their shape by time series clustering and classification. In the third step, we determine the optimal forecasting method for each generated cluster of time series. Based on the prediction of future frequencies, we identify the most interesting attribute combinations in the last step. These are displayed geographically so that a police analyst can easily identify current and developing hot spots

    A Study Of Factors Contributing To Self-reported Anomalies In Civil Aviation

    Get PDF
    A study investigating what factors are present leading to pilots submitting voluntary anomaly reports regarding their flight performance was conducted. The study employed statistical methods, text mining, clustering, and dimensional reduction techniques in an effort to determine relationships between factors and anomalies. A review of the literature was conducted to determine what factors are contributing to these anomalous incidents, as well as what research exists on human error, its causes, and its management. Data from the NASA Aviation Safety Reporting System (ASRS) was analyzed using traditional statistical methods such as frequencies and multinomial logistic regression. Recently formalized approaches in text mining such as Knowledge Based Discovery (KBD) and Literature Based Discovery (LBD) were employed to create associations between factors and anomalies. These methods were also used to generate predictive models. Finally, advances in dimensional reduction techniques identified concepts or keywords within records, thus creating a framework for an unsupervised document classification system. Findings from this study reinforced established views on contributing factors to civil aviation anomalies. New associations between previously unrelated factors and conditions were also found. Dimensionality reduction also demonstrated the possibility of identifying salient factors from unstructured text records, and was able to classify these records using these identified features

    Prediction Techniques in Internet of Things (IoT) Environment: A Comparative Study

    Get PDF
    Socialization and Personalization in Internet of Things (IOT) environment are the current trends in computing research. Most of the research work stresses the importance of predicting the service & providing socialized and personalized services. This paper presents a survey report on different techniques used for predicting user intention in wide variety of IOT based applications like smart mobile, smart television, web mining, weather forecasting, health-care/medical, robotics, road-traffic, educational data mining, natural calamities, retail banking, e-commerce, wireless networks & social networking. As per the survey made the prediction techniques are used for: predicting the application that can be accessed by the mobile user, predicting the next page to be accessed by web user, predicting the users favorite TV program, predicting user navigational patterns and usage needs on websites & also to extract the users browsing behavior, predicting future climate conditions, predicting whether a patient is suffering from a disease, predicting user intention to make implicit and human-like interactions possible by accepting implicit commands, predicting the amount of traffic occurring at a particular location, predicting student performance in schools & colleges, predicting & estimating the frequency of natural calamities occurrences like floods, earthquakes over a long period of time & also to take precautionary measures, predicting & detecting false user trying to make transaction in the name of genuine user, predicting the actions performed by the user to improve the business, predicting & detecting the intruder acting in the network, predicting the mood transition information of the user by using context history, etc. This paper also discusses different techniques like Decision Tree algorithm, Artificial Intelligence and Data Mining based Machine learning techniques, Content and Collaborative based Recommender algorithms used for prediction
    • …
    corecore