1,220 research outputs found

    copulaedas: An R Package for Estimation of Distribution Algorithms Based on Copulas

    Get PDF
    The use of copula-based models in EDAs (estimation of distribution algorithms) is currently an active area of research. In this context, the copulaedas package for R provides a platform where EDAs based on copulas can be implemented and studied. The package offers complete implementations of various EDAs based on copulas and vines, a group of well-known optimization problems, and utility functions to study the performance of the algorithms. Newly developed EDAs can be easily integrated into the package by extending an S4 class with generic functions for their main components. This paper presents copulaedas by providing an overview of EDAs based on copulas, a description of the implementation of the package, and an illustration of its use through examples. The examples include running the EDAs defined in the package, implementing new algorithms, and performing an empirical study to compare the behavior of different algorithms on benchmark functions and a real-world problem

    Contributions to Vine-Copula Modeling

    Get PDF
    144 p.Regular vine-copula models (R-vines) are a powerful statistical tool for modeling thedependence structure of multivariate distribution functions. In particular, they allow modelingdierent types of dependencies among random variables independently of their marginaldistributions, which is deemed the most valued characteristic of these models. In this thesis, weinvestigate the theoretical properties of R-vines for representing dependencies and extend theiruse to solve supervised classication problems. We focus on three research directions.!In the rst line of research, the relationship between the graphical representations of R-vines!ÁREA LÍNEA1 2 0 3 0 4ÁREA LÍNEA1 2 0 3 1 7ÁREA LÍNEAÁREA LÍNEA!and Bayesian polytree networks is analyzed in terms of how conditional pairwise independence!relationships are represented by both models. In order to do that, we use an extended graphical!representation of R-vines in which the R-vine graph is endowed with further expressiveness,being possible to distinguish between edges representing independence and dependencerelationships. Using this representation, a separation criterion in the R-vine graph, called Rseparation,is dened. The proposed criterion is used in designing methods for building thegraphical structure of polytrees from that of R-vines, and vice versa. Moreover, possiblecorrespondences between the R-vine graph and the associated R-vine copula as well as dierentproperties of R-separation are analyzed. In the second research line, we design methods forlearning the graphical structure of R-vines from dependence lists. The main challenge of thistask lies in the extremely large size of the search space of all possible R-vine structures. Weprovide two strategies to solve the problem of learning R-vines that represent the largestnumber of dependencies in a list. The rst approach is a 0 -1 linear programming formulation forbuilding truncated R-vines with only two trees. The second approach is an evolutionaryalgorithm, which is able to learn complete and truncated R-vines. Experimental results show thesuccess of this strategy in solving the optimization problem posed. In the third research line, weintroduce a supervised classication approach where the dependence structure of the problemfeatures is modeled through R-vines. The ecacy of these classiers is validated in a mentaldecoding problem and in an image recognition task. While Rvines have been extensivelyapplied in elds such as economics, nance and statistics, only recently have they found theirplace in classication tasks. This contribution represents a step forward in understanding R-vinesand the prospect of extending their use to other machine learning tasks

    Probabilistic modeling of flood characterizations with parametric and minimum information pair-copula model

    Get PDF
    This paper highlights the usefulness of the minimum information and parametric pair-copula construction (PCC) to model the joint distribution of flood event properties. Both of these models outperform other standard multivariate copula in modeling multivariate flood data that exhibiting complex patterns of dependence, particularly in the tails. In particular, the minimum information pair-copula model shows greater flexibility and produces better approximation of the joint probability density and corresponding measures have capability for effective hazard assessments. The study demonstrates that any multivariate density can be approximated to any degree of desired precision using minimum information pair-copula model and can be practically used for probabilistic flood hazard assessment
    corecore