315,652 research outputs found

    A Variational Framework for Structure from Motion inOmnidirectional Image Sequences

    Get PDF
    We address the problem of depth and ego-motion estimation from omnidirectional images. We propose a correspondence-free structure-from-motion problem for sequences of images mapped on the 2-sphere. A novel graph-based variational framework is first proposed for depth estimation between pairs of images. The estimation is cast as a TV-L1 optimization problem that is solved by a fast graph-based algorithm. The ego-motion is then estimated directly from the depth information without explicit computation of the optical flow. Both problems are finally addressed together in an iterative algorithm that alternates between depth and ego-motion estimation for fast computation of 3D information from motion in image sequences. Experimental results demonstrate the effective performance of the proposed algorithm for 3D reconstruction from synthetic and natural omnidirectional image

    Leibniz Equivalence. On Leibniz's (Bad) Influence on the Logical Empiricist Interpretation of General Relativity

    Get PDF
    Einstein’s “point-coincidence argument'” as a response to the “hole argument” is usually considered as an expression of “Leibniz equivalence,” a restatement of indiscernibility in the sense of Leibniz. Through a historical-critical analysis of Logical Empiricists' interpretation of General Relativity, the paper attempts to show that this labeling is misleading. Logical Empiricists tried explicitly to understand the point-coincidence argument as an indiscernibility argument of the Leibnizian kind, such as those formulated in the 19th century debate about geometry, by authors such as Poincaré, Helmholtz or Hausdorff. However, they clearly failed to give a plausible account of General Relativity. Thus the point-coincidence/hole argument cannot be interpreted as Leibnizian indiscernibility argument, but must be considered as an indiscernibility argument of a new kind. Weyl's analysis of Leibniz's and Einstein's indiscernibility arguments is used to support this claim

    ShapeFit and ShapeKick for Robust, Scalable Structure from Motion

    Full text link
    We introduce a new method for location recovery from pair-wise directions that leverages an efficient convex program that comes with exact recovery guarantees, even in the presence of adversarial outliers. When pairwise directions represent scaled relative positions between pairs of views (estimated for instance with epipolar geometry) our method can be used for location recovery, that is the determination of relative pose up to a single unknown scale. For this task, our method yields performance comparable to the state-of-the-art with an order of magnitude speed-up. Our proposed numerical framework is flexible in that it accommodates other approaches to location recovery and can be used to speed up other methods. These properties are demonstrated by extensively testing against state-of-the-art methods for location recovery on 13 large, irregular collections of images of real scenes in addition to simulated data with ground truth

    Semiclassical approach to Bose-Einstein condensates in a triple well potential

    Get PDF
    We present a new approach for the analysis of Bose-Einstein condensates in a few mode approximation. This method has already been used to successfully analyze the vibrational modes in various molecular systems and offers a new perspective on the dynamics in many particle bosonic systems. We discuss a system consisting of a Bose-Einstein condensate in a triple well potential. Such systems correspond to classical Hamiltonian systems with three degrees of freedom. The semiclassical approach allows a simple visualization of the eigenstates of the quantum system referring to the underlying classical dynamics. From this classification we can read off the dynamical properties of the eigenstates such as particle exchange between the wells and entanglement without further calculations. In addition, this approach offers new insights into the validity of the mean-field description of the many particle system by the Gross-Pitaevskii equation, since we make use of exactly this correspondence in our semiclassical analysis. We choose a three mode system in order to visualize it easily and, moreover, to have a sufficiently interesting structure, although the method can also be extended to higher dimensional systems.Comment: 15 pages, 15 figure
    • …
    corecore