100,540 research outputs found

    Pop-up SLAM: Semantic Monocular Plane SLAM for Low-texture Environments

    Full text link
    Existing simultaneous localization and mapping (SLAM) algorithms are not robust in challenging low-texture environments because there are only few salient features. The resulting sparse or semi-dense map also conveys little information for motion planning. Though some work utilize plane or scene layout for dense map regularization, they require decent state estimation from other sources. In this paper, we propose real-time monocular plane SLAM to demonstrate that scene understanding could improve both state estimation and dense mapping especially in low-texture environments. The plane measurements come from a pop-up 3D plane model applied to each single image. We also combine planes with point based SLAM to improve robustness. On a public TUM dataset, our algorithm generates a dense semantic 3D model with pixel depth error of 6.2 cm while existing SLAM algorithms fail. On a 60 m long dataset with loops, our method creates a much better 3D model with state estimation error of 0.67%.Comment: International Conference on Intelligent Robots and Systems (IROS) 201

    Reducing "Structure From Motion": a General Framework for Dynamic Vision - Part 1: Modeling

    Get PDF
    The literature on recursive estimation of structure and motion from monocular image sequences comprises a large number of different models and estimation techniques. We propose a framework that allows us to derive and compare all models by following the idea of dynamical system reduction. The "natural" dynamic model, derived by the rigidity constraint and the perspective projection, is first reduced by explicitly decoupling structure (depth) from motion. Then implicit decoupling techniques are explored, which consist of imposing that some function of the unknown parameters is held constant. By appropriately choosing such a function, not only can we account for all models seen so far in the literature, but we can also derive novel ones

    Motion from Fixation

    Get PDF
    We study the problem of estimating rigid motion from a sequence of monocular perspective images obtained by navigating around an object while fixating a particular feature point. The motivation comes from the mechanics of the buman eye, which either pursuits smoothly some fixation point in the scene, or "saccades" between different fixation points. In particular, we are interested in understanding whether fixation helps the process of estimating motion in the sense that it makes it more robust, better conditioned or simpler to solve. We cast the problem in the framework of "dynamic epipolar geometry", and propose an implicit dynamical model for recursively estimating motion from fixation. This allows us to compare directly the quality of the estimates of motion obtained by imposing the fixation constraint, or by assuming a general rigid motion, simply by changing the geometry of the parameter space while maintaining the same structure of the recursive estimator. We also present a closed-form static solution from two views, and a recursive estimator of the absolute attitude between the viewer and the scene. One important issue is how do the estimates degrade in presence of disturbances in the tracking procedure. We describe a simple fixation control that converges exponentially, which is complemented by a image shift-registration for achieving sub-pixel accuracy, and assess how small deviations from perfect tracking affect the estimates of motion

    Dynamic Body VSLAM with Semantic Constraints

    Full text link
    Image based reconstruction of urban environments is a challenging problem that deals with optimization of large number of variables, and has several sources of errors like the presence of dynamic objects. Since most large scale approaches make the assumption of observing static scenes, dynamic objects are relegated to the noise modeling section of such systems. This is an approach of convenience since the RANSAC based framework used to compute most multiview geometric quantities for static scenes naturally confine dynamic objects to the class of outlier measurements. However, reconstructing dynamic objects along with the static environment helps us get a complete picture of an urban environment. Such understanding can then be used for important robotic tasks like path planning for autonomous navigation, obstacle tracking and avoidance, and other areas. In this paper, we propose a system for robust SLAM that works in both static and dynamic environments. To overcome the challenge of dynamic objects in the scene, we propose a new model to incorporate semantic constraints into the reconstruction algorithm. While some of these constraints are based on multi-layered dense CRFs trained over appearance as well as motion cues, other proposed constraints can be expressed as additional terms in the bundle adjustment optimization process that does iterative refinement of 3D structure and camera / object motion trajectories. We show results on the challenging KITTI urban dataset for accuracy of motion segmentation and reconstruction of the trajectory and shape of moving objects relative to ground truth. We are able to show average relative error reduction by a significant amount for moving object trajectory reconstruction relative to state-of-the-art methods like VISO 2, as well as standard bundle adjustment algorithms

    Quantum Dynamics of Three Coupled Atomic Bose-Einstein Condensates

    Get PDF
    The simplest model of three coupled Bose-Einstein Condensates (BEC) is investigated using a group theoretical method. The stationary solutions are determined using the SU(3) group under the mean field approximation. This semiclassical analysis using the system symmetries shows a transition in the dynamics of the system from self trapping to delocalization at a critical value for the coupling between the condensates. The global dynamics are investigated by examination of the stable points and our analysis shows the structure of the stable points depends on the ratio of the condensate coupling to the particle-particle interaction, undergoes bifurcations as this ratio is varied. This semiclassical model is compared to a full quantum treatment, which also displays the dynamical transition. The quantum case has collapse and revival sequences superposed on the semiclassical dynamics reflecting the underlying discreteness of the spectrum. Non-zero circular current states are also demonstrated as one of the higher dimensional effects displayed in this system.Comment: Accepted to PR
    • …
    corecore