5,830 research outputs found

    Self-Assembling of Networks in an Agent-Based Model

    Full text link
    We propose a model to show the self-assembling of network-like structures between a set of nodes without using preexisting positional information or long-range attraction of the nodes. The model is based on Brownian agents that are capable of producing different local (chemical) information and respond to it in a non-linear manner. They solve two tasks in parallel: (i) the detection of the appropriate nodes, and (ii) the establishment of stable links between them. We present results of computer simulations that demonstrate the emergence of robust network structures and investigate the connectivity of the network by means of both analytical estimations and computer simulations. PACS: 05.65.+b, 89.75.Kd, 84.30.Bv, 87.18.SnComment: 10 pages, 8 figures. A video of the computer simulations can be found at http://www.ais.fhg.de/~frank/network.html. After publication, this paper was also included in: Virtual Journal of Biological Physics Research 4/5 (September 1, 2002) and Virtual Journal of Nanoscale Science & Technology 6/10 (September 2, 2002). For related work, see also http://www.ais.fhg.de/~frank/active.htm

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 141)

    Get PDF
    This special bibliography lists 267 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1975

    Models for the Effects of G-seat Cuing on Roll-axis Tracking Performance

    Get PDF
    Including whole-body motion in a flight simulator improves performance for a variety of tasks requiring a pilot to compensate for the effects of unexpected disturbances. A possible mechanism for this improvement is that whole-body motion provides high derivative vehicle state information whic allows the pilot to generate more lead in responding to the external disturbances. During development of motion simulating algorithms for an advanced g-cuing system it was discovered that an algorithm based on aircraft roll acceleration producted little or no performance improvement. On the other hand, algorithms based on roll position or roll velocity produced performance equivalent to whole-body motion. The analysis and modeling conducted at both the sensory system and manual control performance levels to explain the above results are described

    Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

    Full text link
    We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables 3D human pose estimation using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall.Comment: 12 pages, Accepted at Eurographics 201

    What grid cells convey about rat location

    Get PDF
    We characterize the relationship between the simultaneously recorded quantities of rodent grid cell firing and the position of the rat. The formalization reveals various properties of grid cell activity when considered as a neural code for representing and updating estimates of the rat's location. We show that, although the spatially periodic response of grid cells appears wasteful, the code is fully combinatorial in capacity. The resulting range for unambiguous position representation is vastly greater than the ≈1–10 m periods of individual lattices, allowing for unique high-resolution position specification over the behavioral foraging ranges of rats, with excess capacity that could be used for error correction. Next, we show that the merits of the grid cell code for position representation extend well beyond capacity and include arithmetic properties that facilitate position updating. We conclude by considering the numerous implications, for downstream readouts and experimental tests, of the properties of the grid cell code
    corecore