290 research outputs found

    Versatile Multi-Contact Planning and Control for Legged Loco-Manipulation

    Full text link
    Loco-manipulation planning skills are pivotal for expanding the utility of robots in everyday environments. These skills can be assessed based on a system's ability to coordinate complex holistic movements and multiple contact interactions when solving different tasks. However, existing approaches have been merely able to shape such behaviors with hand-crafted state machines, densely engineered rewards, or pre-recorded expert demonstrations. Here, we propose a minimally-guided framework that automatically discovers whole-body trajectories jointly with contact schedules for solving general loco-manipulation tasks in pre-modeled environments. The key insight is that multi-modal problems of this nature can be formulated and treated within the context of integrated Task and Motion Planning (TAMP). An effective bilevel search strategy is achieved by incorporating domain-specific rules and adequately combining the strengths of different planning techniques: trajectory optimization and informed graph search coupled with sampling-based planning. We showcase emergent behaviors for a quadrupedal mobile manipulator exploiting both prehensile and non-prehensile interactions to perform real-world tasks such as opening/closing heavy dishwashers and traversing spring-loaded doors. These behaviors are also deployed on the real system using a two-layer whole-body tracking controller

    Modeling and Communicating Flexibility in Smart Grids Using Artificial Neural Networks as Surrogate Models

    Get PDF
    Increasing shares of renewable energies and the transition towards electric vehicles pose major challenges to the energy system. In order to tackle these in an economically sensible way, the flexibility of distributed energy resources (DERs), such as battery energy storage systems, combined heat and power plants, and heat pumps, needs to be exploited. Modeling and communicating this flexibility is a fundamental step when trying to achieve control over DERs. The literature proposes and makes use of many different approaches, not only for the exploitation itself, but also in terms of models. In the first step, this thesis presents an extensive literature review and a general framework for classifying exploitation approaches and the communicated models. Often, the employed models only apply to specific types of DERs, or the models are so abstract that they neglect constraints and only roughly outline the true flexibility. Surrogate models, which are learned from data, can pose as generic DER models and may potentially be trained in a fully automated process. In this thesis, the idea of encoding the flexibility of DERs into ANNs is systematically investigated. Based on the presented framework, a set of ANN-based surrogate modeling approaches is derived and outlined, of which some are only applicable for specific use cases. In order to establish a baseline for the approximation quality, one of the most versatile identified approaches is evaluated in order to assess how well a set of reference models is approximated. If this versatile model is able to capture the flexibility well, a more specific model can be expected to do so even better. The results show that simple DERs are very closely approximated, and for more complex DERs and combinations of multiple DERs, a high approximation quality can be achieved by introducing buffers. Additionally, the investigated approach has been tested in scheduling tasks for multiple different DERs, showing that it is indeed possible to use ANN-based surrogates for the flexibility of DERs to derive load schedules. Finally, the computational complexity of utilizing the different approaches for controlling DERs is compared

    1. Helgoland Power and Energy Conference - 24. Dresdener Kreis 2023

    Get PDF
    Der Sammelband "1. Helgoland Power and Energy Conference" beinhaltet neben einem kurzen Bericht zum 24. Treffen des Dresdener Kreises 2023 wissenschaftliche BeitrĂ€ge von Doktoranden der beteiligten Hochschulinstitute zum Thema Elektroenergieversorgung. Der Dresdener Kreis setzt sich aus der Professur fĂŒr Elektroenergieversorgung der Technischen UniversitĂ€t Dresden, dem Fachgebiet Elektrische Anlagen und Netze der UniversitĂ€t Duisburg-Essen, dem Fachgebiet Elektrische Energieversorgung der Leibniz UniversitĂ€t Hannover und dem Lehrstuhl Elektrische Netze und Erneuerbare Energie der Otto-von-Guericke UniversitĂ€t Magdeburg zusammen und trifft sich einmal im Jahr zum fachlichen Austausch an einer der beteiligten UniversitĂ€ten

    Computational Optimizations for Machine Learning

    Get PDF
    The present book contains the 10 articles finally accepted for publication in the Special Issue “Computational Optimizations for Machine Learning” of the MDPI journal Mathematics, which cover a wide range of topics connected to the theory and applications of machine learning, neural networks and artificial intelligence. These topics include, among others, various types of machine learning classes, such as supervised, unsupervised and reinforcement learning, deep neural networks, convolutional neural networks, GANs, decision trees, linear regression, SVM, K-means clustering, Q-learning, temporal difference, deep adversarial networks and more. It is hoped that the book will be interesting and useful to those developing mathematical algorithms and applications in the domain of artificial intelligence and machine learning as well as for those having the appropriate mathematical background and willing to become familiar with recent advances of machine learning computational optimization mathematics, which has nowadays permeated into almost all sectors of human life and activity

    Structure Exploitation in Mixed-Integer Optimization with Applications to Energy Systems

    Get PDF
    Das Ziel dieser Arbeit ist neue numerische Methoden fĂŒr gemischt-ganzzahlige Optimierungsprobleme zu entwickeln um eine verbesserte Geschwindigkeit und Skalierbarkeit zu erreichen. Dies erfolgt durch Ausnutzung gĂ€ngiger Problemstrukturen wie separierbarkeit oder Turnpike-eigenschaften. Methoden, die diese Strukturen ausnutzen können, wurden bereits im Bereich der verteilten Optimierung und optimalen Steuerung entwickelt, sie sind jedoch nicht direkt auf gemischt-ganztĂ€gige Probleme anwendbar. Um verteilte Rechenressourcen zur Lösung von gemischt-ganzzahligen Problemen nutzen zu können, sind neue Methoden erforderlich. Zu diesem Zweck werden verschiedene Erweiterungen bestehender Methoden sowie neuartige Techniken zur gemischt-ganzzahligen Optimierung vorgestellt. Benchmark-Probleme aus Strom- und Energiesystemen werden verwendet, um zu demonstrieren, dass die vorgestellten Methoden zu schnelleren Laufzeiten fĂŒhren und die Lösung großer Probleme ermöglichen, die sonst nicht zentral gelöst werden können. Die vorliegende Arbeit enthĂ€lt die folgenden BeitrĂ€ge: - Eine Erweiterung des Augmented Lagrangian Alternating Direction Inexact Newton-Algorithmus zur verteilten Optimierung fĂŒr gemischt-ganzzahlige Probleme. - Ein neuer, teilweise-verteilter Optimierungsalgorithmus fĂŒr die gemischt-ganzzahlige Optimierung basierend auf Ă€ußeren Approximationsverfahren. - Ein neuer Optimierungsalgorithmus fĂŒr die verteilte gemischt-ganzzahlige Optimierung, der auf branch-and-bound Verfahren basiert. - Eine erste Untersuchung von Turnpike-Eigenschaften bei Optimalsteuerungsproblemen mit gemischten-Ganzzahligen EntscheidungsgrĂ¶ĂŸen und ein spezieller Algorithmus zur Lösung dieser Probleme. - Eine neue Branch-and-Bound Heuristik, die a priori Probleminformationen effizienter nutzt als aktuelle Warmstarttechniken. Schließlich wird gezeigt, dass die Ergebnisse der vorgestellten Optimierungsalgorithmen fĂŒr verteilte gemischt-ganzzahlige Optimierung stark PartitionierungsabhĂ€ngig sind. Zu diesem Zweck wird auch eine Untersuchung von Partitionierungsmethoden fĂŒr die verteilte Optimierung vorgestellt
    • 

    corecore