12,098 research outputs found

    Intelligent Feature Extraction, Data Fusion and Detection of Concrete Bridge Cracks: Current Development and Challenges

    Full text link
    As a common appearance defect of concrete bridges, cracks are important indices for bridge structure health assessment. Although there has been much research on crack identification, research on the evolution mechanism of bridge cracks is still far from practical applications. In this paper, the state-of-the-art research on intelligent theories and methodologies for intelligent feature extraction, data fusion and crack detection based on data-driven approaches is comprehensively reviewed. The research is discussed from three aspects: the feature extraction level of the multimodal parameters of bridge cracks, the description level and the diagnosis level of the bridge crack damage states. We focus on previous research concerning the quantitative characterization problems of multimodal parameters of bridge cracks and their implementation in crack identification, while highlighting some of their major drawbacks. In addition, the current challenges and potential future research directions are discussed.Comment: Published at Intelligence & Robotics; Its copyright belongs to author

    Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm

    Get PDF
    Offshore Wind has become the most profitable renewable energy source due to the remarkable development it has experienced in Europe over the last decade. In this paper, a review of Structural Health Monitoring Systems (SHMS) for offshore wind turbines (OWT) has been carried out considering the topic as a Statistical Pattern Recognition problem. Therefore, each one of the stages of this paradigm has been reviewed focusing on OWT application. These stages are: Operational Evaluation; Data Acquisition, Normalization and Cleansing; Feature Extraction and Information Condensation; and Statistical Model Development. It is expected that optimizing each stage, SHMS can contribute to the development of efficient Condition-Based Maintenance Strategies. Optimizing this strategy will help reduce labor costs of OWTsืณ inspection, avoid unnecessary maintenance, identify design weaknesses before failure, improve the availability of power production while preventing wind turbinesืณ overloading, therefore, maximizing the investmentsืณ return. In the forthcoming years, a growing interest in SHM technologies for OWT is expected, enhancing the potential of offshore wind farm deployments further offshore. Increasing efficiency in operational management will contribute towards achieving UKืณs 2020 and 2050 targets, through ultimately reducing the Levelised Cost of Energy (LCOE)

    Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion

    Get PDF
    A novel hybrid framework of optimized deep learning models combined with multi-sensor fusion is developed for condition diagnosis of concrete arch beam. The vibration responses of structure are first processed by principal component analysis for dimensionality reduction and noise elimination. Then, the deep network based on stacked autoencoders (SAE) is established at each sensor for initial condition diagnosis, where extracted principal components and corresponding condition categories are inputs and output, respectively. To enhance diagnostic accuracy of proposed deep SAE, an enhanced whale optimization algorithm is proposed to optimize network meta-parameters. Eventually, Dempster-Shafer fusion algorithm is employed to combine initial diagnosis results from each sensor to make a final diagnosis. A miniature structural component of Sydney Harbour Bridge with artificial multiple progressive damages is tested in laboratory. The results demonstrate that the proposed method can detect structural damage accurately, even under the condition of limited sensors and high levels of uncertainties

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์™€๋ฅ˜๊ธฐ์ธ ์„ ๋ฐ• ํ”„๋กœํŽ ๋Ÿฌ ์ง„๋™ ํƒ์ง€ ๊ธฐ์ˆ 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€(๋ฉ€ํ‹ฐ์Šค์ผ€์ผ ๊ธฐ๊ณ„์„ค๊ณ„์ „๊ณต), 2022. 8. ๊น€์œค์˜.๊ตญ์ œํ•ด์‚ฌ๊ธฐ๊ตฌ(IMO)์˜ ํƒ„์†Œ ๋ฐฐ์ถœ๋Ÿ‰ ์ €๊ฐ ๊ทœ์ œ ๋“ฑ์˜ ๊ทœ์ œ์— ๋”ฐ๋ผ ์กฐ์„  ํ•ด์šด์—…๊ณ„๋Š” ์„ ๋ฐ•์˜ ์ดˆ๋Œ€ํ˜•ํ™”์™€ ์—๋„ˆ์ง€ ์ €๊ฐ์žฅ์น˜(ESD) ๋“ฑ ์นœํ™˜๊ฒฝ ์žฅ์น˜ ์ ์šฉ์œผ๋กœ ๋Œ€์‘ํ•˜๊ณ  ์žˆ๋‹ค. ์ด์— ๋”ฐ๋ผ ์„ ๋ฐ•์˜ ํ”„๋กœํŽ ๋Ÿฌ, ๋Ÿฌ๋”, ESD ๋“ฑ ์ˆ˜์ค‘ ๊ตฌ์กฐ๋ฌผ์˜ ์„ค๊ณ„ ๋ณ€ํ™”๊ฐ€ ์š”๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ์ƒˆ๋กœ์šด ์„ค๊ณ„ ์š”๊ตฌ์กฐ๊ฑด์— ๋งž์ถฐ ์ฃผ์š” ์ œ์›์ด ๊ฒฐ์ •๋˜๋ฉฐ ์ „์‚ฐ์œ ์ฒดํ•ด์„ ๋ฐ ์ˆ˜์กฐ์‹œํ—˜์„ ํ†ตํ•œ ์„ฑ๋Šฅ์„ค๊ณ„, ์ง„๋™ํ•ด์„ ๋ฐ ๊ตฌ์กฐ๊ฐ•๋„ํ•ด์„์„ ํ†ตํ•œ ๊ตฌ์กฐ์„ค๊ณ„๊ฐ€ ์ง„ํ–‰๋œ๋‹ค. ์ˆ˜์ค‘๊ตฌ์กฐ๋ฌผ ์ œ์ž‘ ์ดํ›„์—๋Š” ํ’ˆ์งˆ๊ฒ€์‚ฌ๋ฅผ ๊ฑฐ์ณ ์‹œ์šด์ „ ์ค‘์— ์„ฑ๋Šฅ๊ณผ ์ง„๋™ํ‰๊ฐ€๋ฅผ ๋งˆ์น˜๋ฉด ์„ ๋ฐ•์ด ์ธ๋„๋œ๋‹ค. ์นœํ™˜๊ฒฝ ์žฅ์น˜๊ฐ€ ์„ค์น˜๋œ ๋Œ€ํ˜• ์ƒ์„ ์˜ ์„ ๋ฏธ ๊ตฌ์กฐ๋ฌผ์€ ํ˜•์ƒ์ด ๋ณต์žกํ•˜์—ฌ ์œ ๋™ ๋ฐ ์ง„๋™ํŠน์„ฑ์˜ ์„ค๊ณ„ ๋ฏผ๊ฐ๋„๊ฐ€ ํฌ๊ณ  ์ƒ์‚ฐ ๊ณต์ฐจ์— ๋”ฐ๋ฅธ ํ”ผ๋กœ์ˆ˜๋ช…์˜ ์‚ฐํฌ๊ฐ€ ํฌ๊ธฐ ๋•Œ๋ฌธ์— ์ดˆ๊ธฐ ์„ค๊ณ„๋‹จ๊ณ„์—์„œ ๋ชจ๋“  ํ’ˆ์งˆ๋ฌธ์ œ๋ฅผ ๊ฑธ๋Ÿฌ ๋‚ด๊ธฐ ์–ด๋ ค์šด ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ํŠนํžˆ ์œ ๋™์žฅ์— ์žˆ๋Š” ์ˆ˜์ค‘๊ตฌ์กฐ๋ฌผ์˜ ๊ฒฝ์šฐ ํŠน์ • ์œ ์†์—์„œ ์™€๋ฅ˜ ์ดํƒˆ์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜๋ฉฐ ์™€๋ฅ˜ ์ดํƒˆ ์ฃผํŒŒ์ˆ˜๊ฐ€ ๊ตฌ์กฐ๋ฌผ์˜ ๊ณ ์œ ์ง„๋™์ˆ˜๊ฐ€ ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ ๊ณต์ง„์— ์ธํ•œ ์™€๋ฅ˜๊ธฐ์ธ์ง„๋™(Vortex Induced Vibration; VIV) ๋ฌธ์ œ๊ฐ€ ์ข…์ข… ๋ฐœ์ƒ๋˜์–ด ์ˆ˜์ค‘๊ตฌ์กฐ๋ฌผ ํ”ผ๋กœ์†์ƒ์˜ ์›์ธ์ด ๋˜๊ณ  ์žˆ๋‹ค. VIV ๋ฌธ์ œ๊ฐ€ ์žˆ๋Š” ์ƒํƒœ๋กœ ์„ ๋ฐ•์ด ์ธ๋„๋  ๊ฒฝ์šฐ ์„ค๊ณ„์ˆ˜๋ช…์„ ๋งŒ์กฑํ•˜์ง€ ๋ชปํ•˜๊ณ  ๋‹จ๊ธฐ๊ฐ„์— ํŒŒ์†์ด ๋˜๋Š” ๊ฒฝ์šฐ๊ฐ€ ๋งŽ์•„ ์กฐ์„ ์†Œ์— ํฐ ํ”ผํ•ด๋ฅผ ์ฃผ๊ธฐ ๋•Œ๋ฌธ์— ์„ ๋ฐ• ์ธ๋„ ์ง์ „์ธ ์„ ๋ฐ• ์‹œ์šด์ „ ๋‹จ๊ณ„์—์„œ ์ง„๋™์ด๋‚˜ ์‘๋ ฅ ๊ณ„์ธก์„ ํ†ตํ•ด VIV ๋ฐœ์ƒ ์—ฌ๋ถ€์˜ ํ™•์ธ์ด ํ•„์š”ํ•˜๋‹ค. ๊ตฌ์กฐ๋ฌผ์— ์ž‘์šฉํ•˜๋Š” ํ•˜์ค‘์„ ๊ณ„์ธกํ•˜๋Š” ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์€ ๊ตฌ์กฐ๋ฌผ์— ์ŠคํŠธ๋ ˆ์ธ๊ฒŒ์ด์ง€๋ฅผ ์„ค์น˜ํ•˜๊ณ  ์ˆ˜์ค‘ ํ…”๋ ˆ๋ฏธํ„ฐ๋ฆฌ๋ฅผ ์„ค์น˜ํ•˜์—ฌ ๊ตฌ์กฐ๋ฌผ์˜ ์ŠคํŠธ๋ ˆ์ธ์„ ์ง์ ‘ ๊ณ„์ธกํ•˜๋Š” ๋ฐฉ๋ฒ•์ด์ง€๋งŒ ๊ณ„์ธก์„ ์œ„ํ•ด ๋งŽ์€ ๋น„์šฉ์ด ์†Œ์š”๋˜๊ณ  ๊ณ„์ธก ์‹คํŒจ์˜ ๊ฐ€๋Šฅ์„ฑ์ด ๋งค์šฐ ๋†’๋‹ค๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋Œ€ํ˜• ์ƒ์„  ํ”„๋กœํŽ ๋Ÿฌ์˜ ๋Œ€ํ‘œ์ ์ธ ์†์ƒ ์›์ธ์ธ Vortex Induced Vibration์„ ์‹œ์šด์ „ ๋‹จ๊ณ„์—์„œ ์„ ์ฒด ์ง„๋™ ๊ณ„์ธก์„ ํ†ตํ•ด ๊ฐ„์ ‘์ ์œผ๋กœ ๊ฒ€์ถœํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ํŠน์ • VIV๊ฐ€ ๋ฌธ์ œ๊ฐ€ ๋˜๋Š” ๊ฒฝ์šฐ๋Š” ์œ ์†์—์„œ ์™€๋ฅ˜ ์ดํƒˆ ์ฃผํŒŒ์ˆ˜๊ฐ€ ๊ตฌ์กฐ๋ฌผ์˜ ๊ณ ์œ ์ง„๋™์ˆ˜๊ฐ€ ์ผ์น˜ํ•˜๋Š” ๊ฒฝ์šฐ ๊ณต์ง„์— ์˜ํ•ด ์™€๋ฅ˜์ดํƒˆ ๊ฐ•๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์œ ์†์ด ์ฆ๊ฐ€ํ•˜๋”๋ผ๋„ ์™€๋ฅ˜์ดํƒˆ ์ฃผํŒŒ์ˆ˜๊ฐ€ ์œ ์ง€๋˜๋Š” Lock-in ํ˜„์ƒ์ด ๋ฐœ์ƒํ•˜๋Š” ๊ฒฝ์šฐ๋กœ ๊ฐ„์ ‘ ๊ณ„์ธก์„ ํ†ตํ•ด ์ด๋ฅผ ๋ช…์‹œ์ ์œผ๋กœ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์ง„๋™ ์ „๋ฌธ๊ฐ€์˜ ๋ฐ˜๋ณต์ ์ธ ์ง„๋™ ๊ณ„์ธก ๋ฐ ํ‰๊ฐ€ ํ”„๋กœ์„ธ์Šค๊ฐ€ ํ•„์š”ํ•œ๋ฐ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ „๋ฌธ๊ฐ€๋ฅผ ๋Œ€์‹ ํ•œ ๋”ฅ๋Ÿฌ๋‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•œ VIV ํƒ์ง€ ์‹œ์Šคํ…œ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ง„๋™ ๋ถ„์„๊ณผ VIV ๊ฒ€์ถœ ์ž๋™ํ™”๋ฅผ ์œ„ํ•ด ์ด๋ฏธ์ง€ ๊ธฐ๋ฐ˜์˜ Object detection์„ ์œ„ํ•ด ๋„๋ฆฌ ์ด์šฉ๋˜๊ณ  ์žˆ๋Š” CNN(Convolution Neural Network) ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ์ด์šฉํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” Object detection์„ ์ˆ˜ํ–‰ํ•˜๋˜ Classification์€ ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š์•„๋„ ๋˜๋Š” ํŠน์ง•์ด ์žˆ์–ด ์ด์— ํŠนํ™”๋œ CNN ๋ชจ๋ธ ๊ฐœ๋ฐœ์„ ์œ„ํ•ด Hyper parameter๋ฅผ ์กฐ์ •ํ•˜์—ฌ Hidden Layer๋ฅผ ์ฆ๊ฐ€ํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ 30๊ฐœ์˜ CNN๋ชจ๋ธ์„ ๊ฒ€ํ† ํ•˜์˜€๊ณ  ์ตœ์ข…์ ์œผ๋กœ ๊ณผ์ ํ•ฉ์ด ์—†์ด ํƒ์ง€ ์„ฑ๋Šฅ์ด ๋†’์€ 5๊ฐœ์˜ Hidden layer ๊ฐ€์ง„ ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. CNN ํ•™์Šต์„ ์œ„ํ•ด ํ•„์š”ํ•œ ๋Œ€๊ทœ๋ชจ์˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•ด ์ง„๋™ ๋ชจ๋“œ ์ค‘์ฒฉ๋ฒ• ๊ธฐ๋ฐ˜์˜ ๊ฐ„์ด ์„ ๋ฐ• ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๊ณ  ํ”„๋กœํŽ ๋Ÿฌ ๊ธฐ์ง„๋ ฅ์„ ๋ชจ์‚ฌํ•˜์˜€๋‹ค. ๊ฐ„์ด ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ์‹ค์ œ ์ง„๋™๊ณ„์ธก ๊ฒฐ๊ณผ์™€ ์œ ์‚ฌํ•œ ์ง„๋™ ํŠน์„ฑ์„ ๋ณด์ด๋Š” 10,000๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ƒ์„ฑํ•˜์—ฌ ํ•™์Šต์— ์ด์šฉํ•˜์˜€๊ณ  1,000๊ฐœ์˜ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ ํ…Œ์ŠคํŠธํ•œ ๊ฒฐ๊ณผ 82%์ด์ƒ์˜ ํƒ์ง€ ์„ฑ๊ณต๋ฅ ์„ ๋ณด์˜€๋‹ค. ์ œ์•ˆ๋œ ํƒ์ง€์‹œ์Šคํ…œ์˜ ๊ฒ€์ฆ์„ ์œ„ํ•ด ์ถ•์†Œ๋ชจ๋ธ ์‹œํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ํ”„๋กœํŽ ๋Ÿฌ์—์„œ Vortex shedding ์ฃผํŒŒ์ˆ˜์™€ ๋ธ”๋ ˆ์ด๋“œ์˜ ์ˆ˜์ค‘ ๊ณ ์œ ์ง„๋™์ˆ˜๊ฐ€ ์ผ์น˜ํ•˜๋„๋ก ์„ค๊ณ„๋œ 1/10 ์Šค์ผ€์ผ์˜ ์„ ๋ฐ• ์ถ”์ง„ ์‹œ์Šคํ…œ ์ถ•์†Œ ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ ํ”„๋กœํŽ ๋Ÿฌ์—์„œ Vortex Induced Vibration์„ ๋ฐœ์ƒ์‹œํ‚ค๊ณ  ํ”„๋กœํŽ ๋Ÿฌ ์ฃผ๋ณ€ ๊ตฌ์กฐ๋ฌผ์—์„œ ๊ฐ€์†๋„๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ Lock-in ํ˜„์ƒ์— ์˜ํ•œ ์ง„๋™์„ ์ธก์ •ํ•˜์˜€๋‹ค. ์ด ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์œผ๋กœ VIV์˜ ๊ฒ€์ถœ์ด ๊ฐ€๋Šฅํ•จ์„ ๋ณด์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ VIV๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ–ˆ๋˜ ์›์œ ์šด๋ฐ˜์„ ์˜ ์‹œ์šด์ „ ์ค‘ ๊ธฐ๊ด€์‹ค ๋‚ด์—์„œ ๊ณ„์ธก๋œ ์„ ์ฒด ๊ตฌ์กฐ ์ง„๋™๊ฐ’์„ ์ด์šฉํ•˜์—ฌ ๊ฐœ๋ฐœ๋œ ํƒ์ง€ ์‹œ์Šคํ…œ์˜ ํƒ€๋‹น์„ฑ์„ ๊ฒ€์ฆํ•˜๊ณ  ์‹ค์ œ ์„ ๋ฐ•์—์„œ์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ๋„ ํ™•์ธํ•˜์˜€๋‹ค. ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์€ VIV ๊ฒ€์ถœ์€ ์œ„ํ•œ ์ž๋™ํ™” ์‹œ์Šคํ…œ์œผ๋กœ ํ™œ์šฉ์ด ๊ฐ€๋Šฅํ•  ๊ฒƒ์œผ๋กœ ๋ณด์ด๋ฉฐ ํ–ฅํ›„ ์‹ค์„  ๋ฐ์ดํ„ฐ๊ฐ€ ํ™•๋ณด๋  ๊ฒฝ์šฐ ์œ ์šฉ์„ฑ์ด ์ฆ๊ฐ€ํ•  ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹คDue to the International Maritime Organizationโ€™s (IMO) regulations on carbon emission reduction, the shipbuilding and shipping industry increases the size of ships and adopts energy-saving devices (ESD) on ships. Accordingly, design changes of underwater structures such as propellers, rudders, and ESD of ships are required in line with these trends. The lock-in phenomenon caused by vortex-induced vibration (VIV) is a potential cause of vibration fatigue and singing of the propellers of large merchant ships. The VIV occurs when the vibration frequency of a structure immersed in a fluid is locked in its resonance frequencies within a flow speed range. Here, a deep learning-based algorithm is proposed for early detection of the VIV phenomenon. A salient feature in this approach is that the vibrations of a hull structure are used instead of the vibrations of its propeller, implying that indirect hull structure data relatively easy to acquire are utilized. The RPM-frequency representations of the measured vibration signals, which stack the vibration frequency spectrum respective to the propeller RPMs, are used in the algorithm. The resulting waterfall charts, which look like two-dimensional image data, are fed into the proposed convolutional neural network architecture. To generate a large data set needed for the network training, we propose to synthetically produce vibration data using the modal superposition method without computationally-expensive fluid-structure interaction analysis. This way, we generated 100,000 data sets for training, 1,000 sets for hyper-parameter tuning, and 1,000 data sets for the test. The trained network was found to have a success rate of 82% for the test set. We collected vibration data in our laboratory's small-scale ship propulsion system to test the proposed VIV detection algorithm in a more realistic environment. The system was so designed that the vortex shedding frequency and the underwater natural frequency match each other. The proposed VIV detection algorithm was applied to the vibration data collected from the small-scale system. The system was operated in the air and found to be sufficiently reliable. Finally, the proposed algorithm applied to the collected vibration data from the hull structure of a commercial full-scale crude oil carrier in her sea trial operation detected the propeller singing phenomenon correctly.CHAPTER 1. INTRODUCTION 1 1.1 Motivation 1 1.2 Research objectives 8 1.3 Outline of thesis 9 CHAPTER 2. PROPELLER VORTEX-INDUCED VIBRATION MEASUREMNT METHOD 24 2.1 Structural vibration measurement methods 24 2.2 Direct measuremt method for propeller vibration 26 2.3 Indirect measuremt method for propeller vibration 28 CHAPTER 3. DEEP LEARNING NETWORK FOR VIV IDENTIFICATION 39 3.1 Convolution Neural Network 39 3.2 Data generation using mode superposition 46 3.3 Structure of the proposed CNN model 50 3.4 Deep neural networks 53 3.5 Training and diagnosis steps 55 3.6 Performance of the diagnositc model 56 CHAPTER 4. EXPERIMETS AND RESULTS 76 4.1 Experimental apparatus and data collection 76 4.2 Results and discussion 78 CHAPTER 5. ENHANCEMENT OF DETECTION PERFORMANCE USING MULTI-CHANNEL APPROACH 98 CHAPTER 6. VORTEX-INDUCED VIBRATIOIN IDENTIFICATION IN THE PROPELLER OF A CRUDE OIL CARRIER 105 CHAPTER 7. CONCLUSION 114 REFERENCES 118 ABSTRACT(KOREAN) 127๋ฐ•
    • โ€ฆ
    corecore