57 research outputs found

    Smart Bagged Tree-based Classifier optimized by Random Forests (SBT-RF) to Classify Brain- Machine Interface Data

    Get PDF
    Brain-Computer Interface (BCI) is a new technology that uses electrodes and sensors to connect machines and computers with the human brain to improve a person\u27s mental performance. Also, human intentions and thoughts are analyzed and recognized using BCI, which is then translated into Electroencephalogram (EEG) signals. However, certain brain signals may contain redundant information, making classification ineffective. Therefore, relevant characteristics are essential for enhancing classification performance. . Thus, feature selection has been employed to eliminate redundant data before sorting to reduce computation time. BCI Competition III Dataset Iva was used to investigate the efficacy of the proposed system. A Smart Bagged Tree-based Classifier (SBT-RF) technique is presented to determine the importance of the features for selecting and classifying the data. As a result, SBT-RF is better at improving the mean accuracy of the dataset. It also decreases computation cost and training time and increases prediction speed. Furthermore, fewer features mean fewer electrodes, thus lowering the risk of damage to the brain. The proposed algorithm has the greatest average accuracy of ~98% compared to other relevant algorithms in the literature. SBT-RF is compared to state-of-the-art algorithms based on the following performance metrics: Confusion Matrix, ROC-AUC, F1-Score, Training Time, Prediction speed, and Accuracy

    Single-channel source separation using non-negative matrix factorization

    Get PDF

    Decomposition and classification of electroencephalography data

    Get PDF

    An SSVEP Brain-Computer Interface: A Machine Learning Approach

    Get PDF
    A Brain-Computer Interface (BCI) provides a bidirectional communication path for a human to control an external device using brain signals. Among neurophysiological features in BCI systems, steady state visually evoked potentials (SSVEP), natural responses to visual stimulation at specific frequencies, has increasingly drawn attentions because of its high temporal resolution and minimal user training, which are two important parameters in evaluating a BCI system. The performance of a BCI can be improved by a properly selected neurophysiological signal, or by the introduction of machine learning techniques. With the help of machine learning methods, a BCI system can adapt to the user automatically. In this work, a machine learning approach is introduced to the design of an SSVEP based BCI. The following open problems have been explored: 1. Finding a waveform with high success rate of eliciting SSVEP. SSVEP belongs to the evoked potentials, which require stimulations. By comparing square wave, triangle wave and sine wave light signals and their corresponding SSVEP, it was observed that square waves with 50% duty cycle have a significantly higher success rate of eliciting SSVEPs than either sine or triangle stimuli. 2. The resolution of dual stimuli that elicits consistent SSVEP. Previous studies show that the frequency bandwidth of an SSVEP stimulus is limited. Hence it affects the performance of the whole system. A dual-stimulus, the overlay of two distinctive single frequency stimuli, can potentially expand the number of valid SSVEP stimuli. However, the improvement depends on the resolution of the dual stimuli. Our experimental results shothat 4 Hz is the minimum difference between two frequencies in a dual-stimulus that elicits consistent SSVEP. 3. Stimuli and color-space decomposition. It is known in the literature that although low-frequency stimuli (\u3c30 Hz) elicit strong SSVEP, they may cause dizziness. In this work, we explored the design of a visually friendly stimulus from the perspective of color-space decomposition. In particular, a stimulus was designed with a fixed luminance component and variations in the other two dimensions in the HSL (Hue, Saturation, Luminance) color-space. Our results shothat the change of color alone evokes SSVEP, and the embedded frequencies in stimuli affect the harmonics. Also, subjects claimed that a fixed luminance eases the feeling of dizziness caused by low frequency flashing objects. 4. Machine learning techniques have been applied to make a BCI adaptive to individuals. An SSVEP-based BCI brings new requirements to machine learning. Because of the non-stationarity of the brain signal, a classifier should adapt to the time-varying statistical characters of a single user\u27s brain wave in realtime. In this work, the potential function classifier is proposed to address this requirement, and achieves 38.2bits/min on offline EEG data

    Algoritmos de procesado de señal basados en Non-negative Matrix Factorization aplicados a la separación, detección y clasificación de sibilancias en señales de audio respiratorias monocanal

    Get PDF
    La auscultación es el primer examen clínico que un médico lleva a cabo para evaluar el estado del sistema respiratorio, debido a que es un método no invasivo, de bajo coste, fácil de realizar y seguro para el paciente. Sin embargo, el diagnóstico que se deriva de la auscultación sigue siendo un diagnóstico subjetivo que se encuentra condicionado a la habilidad, experiencia y entrenamiento de cada médico en la escucha e interpretación de las señales de audio respiratorias. En consecuencia, se producen un alto porcentaje de diagnósticos erróneos que ponen en riesgo la salud de los pacientes e incrementan el coste asociado a los centros de salud. Esta Tesis propone nuevos métodos basados en Non-negative Matrix Factorization aplicados a la separación, detección y clasificación de sonidos sibilantes para proporcionar una vía de información complementaria al médico que ayude a mejorar la fiabilidad del diagnóstico emitido por el especialista. Auscultation is the first clinical examination that a physician performs to evaluate the condition of the respiratory system, because it is a non-invasive, low-cost, easy-to-perform and safe method for the patient. However, the diagnosis derived from auscultation remains a subjective diagnosis that is conditioned by the ability, experience and training of each physician in the listening and interpretation of respiratory audio signals. As a result, a high percentage of misdiagnoses are produced that endanger the health of patients and increase the cost associated with health centres. This Thesis proposes new methods based on Non-negative Matrix Factorization applied to separation, detection and classification of wheezing sounds in order to provide a complementary information pathway to the physician that helps to improve the reliability of the diagnosis made by the doctor.Tesis Univ. Jaén. Departamento INGENIERÍA DE TELECOMUNICACIÓ

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios

    Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges, and Open Questions

    Full text link
    Multimodal machine learning is a vibrant multi-disciplinary research field that aims to design computer agents with intelligent capabilities such as understanding, reasoning, and learning through integrating multiple communicative modalities, including linguistic, acoustic, visual, tactile, and physiological messages. With the recent interest in video understanding, embodied autonomous agents, text-to-image generation, and multisensor fusion in application domains such as healthcare and robotics, multimodal machine learning has brought unique computational and theoretical challenges to the machine learning community given the heterogeneity of data sources and the interconnections often found between modalities. However, the breadth of progress in multimodal research has made it difficult to identify the common themes and open questions in the field. By synthesizing a broad range of application domains and theoretical frameworks from both historical and recent perspectives, this paper is designed to provide an overview of the computational and theoretical foundations of multimodal machine learning. We start by defining two key principles of modality heterogeneity and interconnections that have driven subsequent innovations, and propose a taxonomy of 6 core technical challenges: representation, alignment, reasoning, generation, transference, and quantification covering historical and recent trends. Recent technical achievements will be presented through the lens of this taxonomy, allowing researchers to understand the similarities and differences across new approaches. We end by motivating several open problems for future research as identified by our taxonomy

    Biomechatronics: Harmonizing Mechatronic Systems with Human Beings

    Get PDF
    This eBook provides a comprehensive treatise on modern biomechatronic systems centred around human applications. A particular emphasis is given to exoskeleton designs for assistance and training with advanced interfaces in human-machine interaction. Some of these designs are validated with experimental results which the reader will find very informative as building-blocks for designing such systems. This eBook will be ideally suited to those researching in biomechatronic area with bio-feedback applications or those who are involved in high-end research on manmachine interfaces. This may also serve as a textbook for biomechatronic design at post-graduate level

    On robust spatial filtering of EEG in nonstationary environments

    Full text link
    corecore