5,586 research outputs found

    Neural Intrinsic timescales in the macaque dorsal premotor cortex predict the strength of spatial response coding

    Get PDF
    Our brain continuously receives information over multiple timescales that are differently processed across areas. In this study, we investigated the intrinsic timescale of neurons in the dorsal premotor cortex (PMd) of two rhesus macaques while performing a non-match-to-goal task. The task rule was to reject the previously chosen target and select the alternative one. We defined the intrinsic timescale as the decay constant of the autocorrelation structure computed during a baseline period of the task. We found that neurons with longer intrinsic timescale tended to maintain a stronger spatial response coding during a delay period. This result suggests that longer intrinsic timescales predict the functional role of PMd neurons in a cognitive task. Our estimate of the intrinsic timescale integrates an existing hierarchical model (Murray et al., 2014), by assigning to PMd a lower position than prefrontal cortex in the hierarchical ordering of the brain areas based on neurons' timescales

    Human Posterior Parietal Cortex Plans Where to Reach and What to Avoid

    Get PDF
    In this time-resolved functional magnetic resonance imaging (fMRI) study, we aimed to trace the neuronal correlates of covert planning processes that precede visually guided motor behavior. Specifically, we asked whether human posterior parietal cortex has prospective planning activity that can be distinguished from activity related to retrospective visual memory and attention. Although various electrophysiological studies in monkeys have demonstrated such motor planning at the level of parietal neurons, comparatively little support is provided by recent human imaging experiments. Rather, a majority of experiments highlights a role of human posterior parietal cortex in visual working memory and attention. We thus sought to establish a clear separation of visual memory and attention from processes related to the planning of goal-directed motor behaviors. To this end, we compared delayed-response tasks with identical mnemonic and attentional demands but varying degrees of motor planning. Subjects memorized multiple target locations, and in a random subset of trials targets additionally instructed (1) desired goals or (2) undesired goals for upcoming finger reaches. Compared with the memory/attention-only conditions, both latter situations led to a specific increase of preparatory fMRI activity in posterior parietal and dorsal premotor cortex. Thus, posterior parietal cortex has prospective plans for upcoming behaviors while considering both types of targets relevant for action: those to be acquired and those to be avoided

    Frequency shifts and depth dependence of premotor beta band activity during perceptual decision-making

    Get PDF
    Neural activity in the premotor and motor cortices shows prominent structure in the beta frequency range (13–30 Hz). Currently, the behavioral relevance of this beta band activity (BBA) is debated. The underlying source of motor BBA and how it changes as a function of cortical depth are also not completely understood. Here, we addressed these unresolved questions by investigating BBA recorded using laminar electrodes in the dorsal premotor cortex of 2 male rhesus macaques performing a visual reaction time (RT) reach discrimination task. We observed robust BBA before and after the onset of the visual stimulus but not during the arm movement. While poststimulus BBA was positively correlated with RT throughout the beta frequency range, prestimulus correlation varied by frequency. Low beta frequencies (∼12–20 Hz) were positively correlated with RT, and high beta frequencies (∼22–30 Hz) were negatively correlated with RT. Analysis and simulations suggested that these frequency-dependent correlations could emerge due to a shift in the component frequencies of the prestimulus BBA as a function of RT, such that faster RTs are accompanied by greater power in high beta frequencies. We also observed a laminar dependence of BBA, with deeper electrodes demonstrating stronger power in low beta frequencies both prestimulus and poststimulus. The heterogeneous nature of BBA and the changing relationship between BBA and RT in different task epochs may be a sign of the differential network dynamics involved in cue expectation, decision-making, motor preparation, and movement execution.Published versio

    Motor Preparatory Activity in Posterior Parietal Cortex is Modulated by Subjective Absolute Value

    Get PDF
    For optimal response selection, the consequences associated with behavioral success or failure must be appraised. To determine how monetary consequences influence the neural representations of motor preparation, human brain activity was scanned with fMRI while subjects performed a complex spatial visuomotor task. At the beginning of each trial, reward context cues indicated the potential gain and loss imposed for correct or incorrect trial completion. FMRI-activity in canonical reward structures reflected the expected value related to the context. In contrast, motor preparatory activity in posterior parietal and premotor cortex peaked in high “absolute value” (high gain or loss) conditions: being highest for large gains in subjects who believed they performed well while being highest for large losses in those who believed they performed poorly. These results suggest that the neural activity preceding goal-directed actions incorporates the absolute value of that action, predicated upon subjective, rather than objective, estimates of one's performance

    Neural Modeling and Imaging of the Cortical Interactions Underlying Syllable Production

    Full text link
    This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.National Institute on Deafness and Other Communication Disorders (R01 DC02852, RO1 DC01925

    Sensing with the Motor Cortex

    Get PDF
    The primary motor cortex is a critical node in the network of brain regions responsible for voluntary motor behavior. It has been less appreciated, however, that the motor cortex exhibits sensory responses in a variety of modalities including vision and somatosensation. We review current work that emphasizes the heterogeneity in sensorimotor responses in the motor cortex and focus on its implications for cortical control of movement as well as for brain-machine interface development

    Role of the medial part of the intraparietal sulcus in implementing movement direction

    Get PDF
    The contribution of the posterior parietal cortex (PPC) to visually guided movements has been originally inferred from observations made in patients suffering from optic ataxia. Subsequent electrophysiological studies in monkeys and functional imaging data in humans have corroborated the key role played by the PPC in sensorimotor transformations underlying goal-directed movements, although the exact contribution of this structure remains debated. Here, we used transcranial magnetic stimulation (TMS) to interfere transiently with the function of the left or right medial part of the intraparietal sulcus (mIPS) in healthy volunteers performing visually guided movements with the right hand. We found that a "virtual lesion" of either mIPS increased the scattering in initial movement direction (DIR), leading to longer trajectory and prolonged movement time, but only when TMS was delivered 100-160 ms before movement onset and for movements directed toward contralateral targets. Control experiments showed that deficits in DIR consequent to mIPS virtual lesions resulted from an inappropriate implementation of the motor command underlying the forthcoming movement and not from an inaccurate computation of the target localization. The present study indicates that mIPS plays a causal role in implementing specifically the direction vector of visually guided movements toward objects situated in the contralateral hemifield

    Efficient transfer entropy analysis of non-stationary neural time series

    Full text link
    Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these observations, available estimators assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that deals with the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method. We test the performance and robustness of our implementation on data from simulated stochastic processes and demonstrate the method's applicability to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscientific data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and artificial systems.Comment: 27 pages, 7 figures, submitted to PLOS ON

    Tracking dynamic interactions between structural and functional connectivity : a TMS/EEG-dMRI study

    Get PDF
    Transcranial magnetic stimulation (TMS) in combination with neuroimaging techniques allows to measure the effects of a direct perturbation of the brain. When coupled with high-density electroencephalography (TMS/hd-EEG), TMS pulses revealed electrophysiological signatures of different cortical modules in health and disease. However, the neural underpinnings of these signatures remain unclear. Here, by applying multimodal analyses of cortical response to TMS recordings and diffusion magnetic resonance imaging (dMRI) tractography, we investigated the relationship between functional and structural features of different cortical modules in a cohort of awake healthy volunteers. For each subject, we computed directed functional connectivity interactions between cortical areas from the source-reconstructed TMS/hd-EEG recordings and correlated them with the correspondent structural connectivity matrix extracted from dMRI tractography, in three different frequency bands (alpha, beta, gamma) and two sites of stimulation (left precuneus and left premotor). Each stimulated area appeared to mainly respond to TMS by being functionally elicited in specific frequency bands, that is, beta for precuneus and gamma for premotor. We also observed a temporary decrease in the whole-brain correlation between directed functional connectivity and structural connectivity after TMS in all frequency bands. Notably, when focusing on the stimulated areas only, we found that the structure-function correlation significantly increases over time in the premotor area controlateral to TMS. Our study points out the importance of taking into account the major role played by different cortical oscillations when investigating the mechanisms for integration and segregation of information in the human brain
    corecore