12,955 research outputs found

    Variations of the McEliece Cryptosystem

    Full text link
    Two variations of the McEliece cryptosystem are presented. The first one is based on a relaxation of the column permutation in the classical McEliece scrambling process. This is done in such a way that the Hamming weight of the error, added in the encryption process, can be controlled so that efficient decryption remains possible. The second variation is based on the use of spatially coupled moderate-density parity-check codes as secret codes. These codes are known for their excellent error-correction performance and allow for a relatively low key size in the cryptosystem. For both variants the security with respect to known attacks is discussed

    Design of Finite-Length Irregular Protograph Codes with Low Error Floors over the Binary-Input AWGN Channel Using Cyclic Liftings

    Full text link
    We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the binary-input additive white Gaussian noise (AWGN) channel with good performance in both the waterfall and the error floor region. The design process starts from a protograph which embodies a desirable degree distribution. This protograph is then lifted cyclically to a certain block length of interest. The lift is designed carefully to satisfy a certain approximate cycle extrinsic message degree (ACE) spectrum. The target ACE spectrum is one with extremal properties, implying a good error floor performance for the designed code. The proposed construction results in quasi-cyclic codes which are attractive in practice due to simple encoder and decoder implementation. Simulation results are provided to demonstrate the effectiveness of the proposed construction in comparison with similar existing constructions.Comment: Submitted to IEEE Trans. Communication

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    Analysis of Quasi-Cyclic LDPC codes under ML decoding over the erasure channel

    Get PDF
    In this paper, we show that Quasi-Cyclic LDPC codes can efficiently accommodate the hybrid iterative/ML decoding over the binary erasure channel. We demonstrate that the quasi-cyclic structure of the parity-check matrix can be advantageously used in order to significantly reduce the complexity of the ML decoding. This is achieved by a simple row/column permutation that transforms a QC matrix into a pseudo-band form. Based on this approach, we propose a class of QC-LDPC codes with almost ideal error correction performance under the ML decoding, while the required number of row/symbol operations scales as kkk\sqrt{k}, where kk is the number of source symbols.Comment: 6 pages, ISITA1

    Low-Floor Tanner Codes via Hamming-Node or RSCC-Node Doping

    Get PDF
    We study the design of structured Tanner codes with low error-rate floors on the AWGN channel. The design technique involves the “doping” of standard LDPC (proto-)graphs, by which we mean Hamming or recursive systematic convolutional (RSC) code constraints are used together with single-parity-check (SPC) constraints to construct a code’s protograph. We show that the doping of a “good” graph with Hamming or RSC codes is a pragmatic approach that frequently results in a code with a good threshold and very low error-rate floor. We focus on low-rate Tanner codes, in part because the design of low-rate, low-floor LDPC codes is particularly difficult. Lastly, we perform a simple complexity analysis of our Tanner codes and examine the performance of lower-complexity, suboptimal Hamming-node decoders

    New Classes of Partial Geometries and Their Associated LDPC Codes

    Full text link
    The use of partial geometries to construct parity-check matrices for LDPC codes has resulted in the design of successful codes with a probability of error close to the Shannon capacity at bit error rates down to 101510^{-15}. Such considerations have motivated this further investigation. A new and simple construction of a type of partial geometries with quasi-cyclic structure is given and their properties are investigated. The trapping sets of the partial geometry codes were considered previously using the geometric aspects of the underlying structure to derive information on the size of allowable trapping sets. This topic is further considered here. Finally, there is a natural relationship between partial geometries and strongly regular graphs. The eigenvalues of the adjacency matrices of such graphs are well known and it is of interest to determine if any of the Tanner graphs derived from the partial geometries are good expanders for certain parameter sets, since it can be argued that codes with good geometric and expansion properties might perform well under message-passing decoding.Comment: 34 pages with single column, 6 figure
    corecore