272 research outputs found

    On the complexity of solving linear congruences and computing nullspaces modulo a constant

    Full text link
    We consider the problems of determining the feasibility of a linear congruence, producing a solution to a linear congruence, and finding a spanning set for the nullspace of an integer matrix, where each problem is considered modulo an arbitrary constant k>1. These problems are known to be complete for the logspace modular counting classes {Mod_k L} = {coMod_k L} in special case that k is prime (Buntrock et al, 1992). By considering variants of standard logspace function classes --- related to #L and functions computable by UL machines, but which only characterize the number of accepting paths modulo k --- we show that these problems of linear algebra are also complete for {coMod_k L} for any constant k>1. Our results are obtained by defining a class of functions FUL_k which are low for {Mod_k L} and {coMod_k L} for k>1, using ideas similar to those used in the case of k prime in (Buntrock et al, 1992) to show closure of Mod_k L under NC^1 reductions (including {Mod_k L} oracle reductions). In addition to the results above, we briefly consider the relationship of the class FUL_k for arbitrary moduli k to the class {F.coMod_k L} of functions whose output symbols are verifiable by {coMod_k L} algorithms; and consider what consequences such a comparison may have for oracle closure results of the form {Mod_k L}^{Mod_k L} = {Mod_k L} for composite k.Comment: 17 pages, one Appendix; minor corrections and revisions to presentation, new observations regarding the prospect of oracle closures. Comments welcom

    Efficient Algorithms for Membership in Boolean Hierarchies of Regular Languages

    Get PDF
    The purpose of this paper is to provide efficient algorithms that decide membership for classes of several Boolean hierarchies for which efficiency (or even decidability) were previously not known. We develop new forbidden-chain characterizations for the single levels of these hierarchies and obtain the following results: - The classes of the Boolean hierarchy over level Σ1\Sigma_1 of the dot-depth hierarchy are decidable in NLNL (previously only the decidability was known). The same remains true if predicates mod dd for fixed dd are allowed. - If modular predicates for arbitrary dd are allowed, then the classes of the Boolean hierarchy over level Σ1\Sigma_1 are decidable. - For the restricted case of a two-letter alphabet, the classes of the Boolean hierarchy over level Σ2\Sigma_2 of the Straubing-Th\'erien hierarchy are decidable in NLNL. This is the first decidability result for this hierarchy. - The membership problems for all mentioned Boolean-hierarchy classes are logspace many-one hard for NLNL. - The membership problems for quasi-aperiodic languages and for dd-quasi-aperiodic languages are logspace many-one complete for PSPACEPSPACE

    An Algebraic Preservation Theorem for Aleph-Zero Categorical Quantified Constraint Satisfaction

    Full text link
    We prove an algebraic preservation theorem for positive Horn definability in aleph-zero categorical structures. In particular, we define and study a construction which we call the periodic power of a structure, and define a periomorphism of a structure to be a homomorphism from the periodic power of the structure to the structure itself. Our preservation theorem states that, over an aleph-zero categorical structure, a relation is positive Horn definable if and only if it is preserved by all periomorphisms of the structure. We give applications of this theorem, including a new proof of the known complexity classification of quantified constraint satisfaction on equality templates

    The Complexity of Reasoning for Fragments of Autoepistemic Logic

    Get PDF
    Autoepistemic logic extends propositional logic by the modal operator L. A formula that is preceded by an L is said to be "believed". The logic was introduced by Moore 1985 for modeling an ideally rational agent's behavior and reasoning about his own beliefs. In this paper we analyze all Boolean fragments of autoepistemic logic with respect to the computational complexity of the three most common decision problems expansion existence, brave reasoning and cautious reasoning. As a second contribution we classify the computational complexity of counting the number of stable expansions of a given knowledge base. To the best of our knowledge this is the first paper analyzing the counting problem for autoepistemic logic

    The descriptive complexity approach to LOGCFL

    Full text link
    Building upon the known generalized-quantifier-based first-order characterization of LOGCFL, we lay the groundwork for a deeper investigation. Specifically, we examine subclasses of LOGCFL arising from varying the arity and nesting of groupoidal quantifiers. Our work extends the elaborate theory relating monoidal quantifiers to NC1 and its subclasses. In the absence of the BIT predicate, we resolve the main issues: we show in particular that no single outermost unary groupoidal quantifier with FO can capture all the context-free languages, and we obtain the surprising result that a variant of Greibach's ``hardest context-free language'' is LOGCFL-complete under quantifier-free BIT-free projections. We then prove that FO with unary groupoidal quantifiers is strictly more expressive with the BIT predicate than without. Considering a particular groupoidal quantifier, we prove that first-order logic with majority of pairs is strictly more expressive than first-order with majority of individuals. As a technical tool of independent interest, we define the notion of an aperiodic nondeterministic finite automaton and prove that FO translations are precisely the mappings computed by single-valued aperiodic nondeterministic finite transducers.Comment: 10 pages, 1 figur
    • …
    corecore