1,103 research outputs found

    Full-Order Observer Design for a Class of Nonlinear Port-Hamiltonian Systems

    Get PDF
    In this paper, we present a simple method to design a full-order observer for a class of nonlinear port-Hamiltonian systems (PHSs). We provide a sufficient condition for the observer to be globally exponentially convergent. This condition exploits the natural damping of the system. The observer and its design are illustrated by means of an academic example system. Numerical simulations verify the convergence of the reconstructions towards the unknown system variables

    Port-Hamiltonian modeling for soft-finger manipulation

    Get PDF
    In this paper, we present a port-Hamiltonian model of a multi-fingered robotic hand, with soft-pads, while grasping and manipulating an object. The algebraic constraints of the interconnected systems are represented by a geometric object, called Dirac structure. This provides a powerful way to describe the non-contact to contact transition and contact viscoelasticity, by using the concepts of energy flows and power preserving interconnections. Using the port based model, an Intrinsically Passive Controller (IPC) is used to control the internal forces. Simulation results validate the model and demonstrate the effectiveness of the port-based approach

    Putting energy back in control

    Get PDF
    A control system design technique using the principle of energy balancing was analyzed. Passivity-based control (PBC) techniques were used to analyze complex systems by decomposing them into simpler sub systems, which upon interconnection and total energy addition were helpful in determining the overall system behavior. An attempt to identify physical obstacles that hampered the use of PBC in applications other than mechanical systems was carried out. The technique was applicable to systems which were stabilized with passive controllers

    Permanent Magnet Synchronous Motors are Globally Asymptotically Stabilizable with PI Current Control

    Get PDF
    This note shows that the industry standard desired equilibrium for permanent magnet synchronous motors (i.e., maximum torque per Ampere) can be globally asymptotically stabilized with a PI control around the current errors, provided some viscous friction (possibly small) is present in the rotor dynamics and the proportional gain of the PI is suitably chosen. Instrumental to establish this surprising result is the proof that the map from voltages to currents of the incremental model of the motor satisfies some passivity properties. The analysis relies on basic Lyapunov theory making the result available to a wide audience

    Full-Order Observer Design for a Class of Nonlinear Port-Hamiltonian Systems

    Get PDF
    In this paper, we present a simple method to design a full-order observer for a class of nonlinear port-Hamiltonian systems (PHSs). We provide a sufficient condition for the observer to be globally exponentially convergent. This condition exploits the natural damping of the system. The observer and its design are illustrated by means of an academic example system. Numerical simulations verify the convergence of the reconstructions towards the unknown system variables

    Linear Matrix Inequality Design of Exponentially Stabilizing Observer-Based State Feedback Port-Hamiltonian Controllers

    Full text link
    The design of an observer-based state feedback (OBSF) controller with guaranteed passivity properties for port-Hamiltonian systems (PHS) is addressed using linear matrix inequalities (LMIs). The observer gain is freely chosen and the LMIs conditions such that the state feedback is equivalent to control by interconnection with an input strictly passive (ISP) and/or an output strictly passive (OSP) and zero state detectable (ZSD) port-Hamiltonian controller are established. It is shown that the proposed controller exponentially stabilizes a class of infinite-dimensional PHS and asymptotically stabilizes a class of finite-dimensional non-linear PHS. A Timoshenko beam model and a microelectromechanical system are used to illustrate the proposed approach

    Twenty years of distributed port-Hamiltonian systems:A literature review

    Get PDF
    The port-Hamiltonian (pH) theory for distributed parameter systems has developed greatly in the past two decades. The theory has been successfully extended from finite-dimensional to infinite-dimensional systems through a lot of research efforts. This article collects the different research studies carried out for distributed pH systems. We classify over a hundred and fifty studies based on different research focuses ranging from modeling, discretization, control and theoretical foundations. This literature review highlights the wide applicability of the pH systems theory to complex systems with multi-physical domains using the same tools and language. We also supplement this article with a bibliographical database including all papers reviewed in this paper classified in their respective groups
    • 

    corecore