16,259 research outputs found

    Autoregressive time series prediction by means of fuzzy inference systems using nonparametric residual variance estimation

    Get PDF
    We propose an automatic methodology framework for short- and long-term prediction of time series by means of fuzzy inference systems. In this methodology, fuzzy techniques and statistical techniques for nonparametric residual variance estimation are combined in order to build autoregressive predictive models implemented as fuzzy inference systems. Nonparametric residual variance estimation plays a key role in driving the identification and learning procedures. Concrete criteria and procedures within the proposed methodology framework are applied to a number of time series prediction problems. The learn from examples method introduced by Wang and Mendel (W&M) is used for identification. The Levenberg–Marquardt (L–M) optimization method is then applied for tuning. The W&M method produces compact and potentially accurate inference systems when applied after a proper variable selection stage. The L–M method yields the best compromise between accuracy and interpretability of results, among a set of alternatives. Delta test based residual variance estimations are used in order to select the best subset of inputs to the fuzzy inference systems as well as the number of linguistic labels for the inputs. Experiments on a diverse set of time series prediction benchmarks are compared against least-squares support vector machines (LS-SVM), optimally pruned extreme learning machine (OP-ELM), and k-NN based autoregressors. The advantages of the proposed methodology are shown in terms of linguistic interpretability, generalization capability and computational cost. Furthermore, fuzzy models are shown to be consistently more accurate for prediction in the case of time series coming from real-world applications.Ministerio de Ciencia e Innovación TEC2008-04920Junta de Andalucía P08-TIC-03674, IAC07-I-0205:33080, IAC08-II-3347:5626

    The joint projected normal and skew-normal: a distribution for poly-cylindrical data

    Full text link
    The contribution of this work is the introduction of a multivariate circular-linear (or poly- cylindrical) distribution obtained by combining the projected and the skew-normal. We show the flexibility of our proposal, its property of closure under marginalization and how to quantify multivariate dependence. Due to a non-identifiability issue that our proposal inherits from the projected normal, a compu- tational problem arises. We overcome it in a Bayesian framework, adding suitable latent variables and showing that posterior samples can be obtained with a post-processing of the estimation algo- rithm output. Under specific prior choices, this approach enables us to implement a Markov chain Monte Carlo algorithm relying only on Gibbs steps, where the updates of the parameters are done as if we were working with a multivariate normal likelihood. The proposed approach can be also used with the projected normal. As a proof of concept, on simulated examples we show the ability of our algorithm in recovering the parameters values and to solve the identification problem. Then the proposal is used in a real data example, where the turning-angles (circular variables) and the logarithm of the step-lengths (linear variables) of four zebras are jointly modelled

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd
    corecore