218 research outputs found

    Automatic mesh analysis technique by knowledge-based system

    Get PDF
    technical reportThe finite element analysis technique has been recognized as a very important tool to solve various engineering problems, such as structural analysis, heat transfer, and fluid dynamics. The key point to the technique is discretization of the domain of interest into many finite elements. A good result is strongly dependent on the number and arrangement of meshes. However, it is very difficult to generate efficient finite element meshes, although there are many finite element analysis techniques available. The adaptive mesh generation algorithm has been implemented in the expert system in order to save both time and money in the finite element analysis process. It i s n o t required for a user to know detail information about the finite element analysis processes or computer science to test structural analysis. To verify efficiency of EFEM, analyses for planar and shell domain models have been performed in two and three dimensions respectively

    Solid NURBS Conforming Scaffolding for Isogeometric Analysis

    Get PDF
    This work introduces a scaffolding framework to compactly parametrise solid structures with conforming NURBS elements for isogeometric analysis. A novel formulation introduces a topological, geometrical and parametric subdivision of the space in a minimal plurality of conforming vectorial elements. These determine a multi-compartmental scaffolding for arbitrary branching patterns. A solid smoothing paradigm is devised for the conforming scaffolding achieving higher than positional geometrical and parametric continuity. Results are shown for synthetic shapes of varying complexity, for modular CAD geometries, for branching structures from tessellated meshes and for organic biological structures from imaging data. Representative simulations demonstrate the validity of the introduced scaffolding framework with scalable performance and groundbreaking applications for isogeometric analysis

    Retopology: a comprehensive study of current automation solutions from an artist’s workflow perspective

    Get PDF
    Dissertação de mestrado em Engenharia InformáticaTopology (the density, organization and flow of a 3D mesh’s connectivity) constrains the suitability of a 3D model for any given purpose, be it surface showcasing through renders, use in real-time engines, posing or animation. While some of these use cases might not have very strict topology requirements, others may demand optimized polygon counts for performance reasons, or even specific geometry distribution in order to take deformation directions into account. Many processes for creating 3D models such as sculpting try to make the user unaware of the inner workings of geometry, by providing flexible levels of surface detailing through dynamic geometry allocation. The resulting models have a dense, unorganized topology that is inefficient and unfit for most use cases, with the additional drawback of being hard to work with manually. Retopology is the process of providing a new topology to a model such as these, while maintaining the shape of its surface. It’s a technical and time-consuming process that clashes with the rest of the artist’s workflow, which is mainly composed of creative processes. While there’s abundant research in this area focusing on polygon distribution quality based on surface shape, artists are still left with no options but to resort to manual work when it comes to deformation-optimized topology. This document exposes this disconnect, along with a proposed framework that attempts to provide a more complete retopology solution for 3D artists. This framework combines traditional mesh extraction algorithms with adapting manually-made meshes in a pipeline that tries to understand the input on a higher level, in order to solve deficiencies that are present in current retopology tools. Our results are very positive, presenting an improvement over state of the art solutions, which could possibly steer discussion and research in this area to be more in line with the needs of 3D artists.A topologia (a densidade, organização e direções tomadas pela conectividade de uma mesh 3D) limita a adequação de um modelo 3D para um leque variado de usos, entre os quais, visualização da superfície através de renders, uso em motores real-time, poses ou animações. Embora muitos destes usos não possuam requerimentos de topologia muito rigorosos, outros podem exigir número de polígonos mais baixos por questões de performance, ou até distribuição de geometria específica para acomodar direções de deformação corretamente. Muitos processos de criação de modelos 3D, como escultura, permitem que o utilizador não esteja ciente do que se passa em termos de funcionamento da geometria por debaixo da utilização. Isto é conseguido oferecendo níveis de detalhe flexíveis, alocando geometria de forma dinâmica. Os modelos resultantes têm uma topologia densa e desorganizada, que é ineficiente e pouco apropriada para a maior parte dos casos de uso, com a desvantagem adicional de ser difícil de trabalhar com a mesma manualmente. A retopologia é o processo de gerar uma nova topologia para um modelo, ao mesmo tempo que se mantém a forma da superfície. É um processo técnico e demorado, que entra em conflito com o resto do fluxo de trabalho do artista, que é composto maioritariamente por processos artísticos. Apesar de haver investigação abundante nesta área focada na qualidade da distribuição de polígonos baseada na forma da superfície, os artistas continuam a ter de recorrer ao trabalho manual quando se trata de topologia otimizada para deformações. Este documento expõe esta divergência, propondo, em conjunto, uma framework que tenta oferecer uma solução mais completa para os artistas 3D. Esta framework combina algoritmos de extração de meshes tradicionais com adaptação de meshes feitas manualmente, numa pipeline que tenta compreender o input a um nível superior, resolvendo as deficiências presentes nas ferramentas de retopologia atuais. Os nossos resultados são bastante positivos, apresentando melhorias em relação a soluções de estado da arte, facto que poderá mudar o rumo da discussão e investigação neste campo, para melhor se adequar às necessidades dos artistas 3D

    A framework for automatic and perceptually valid facial expression generation

    Get PDF
    Facial expressions are facial movements reflecting the internal emotional states of a character or in response to social communications. Realistic facial animation should consider at least two factors: believable visual effect and valid facial movements. However, most research tends to separate these two issues. In this paper, we present a framework for generating 3D facial expressions considering both the visual the dynamics effect. A facial expression mapping approach based on local geometry encoding is proposed, which encodes deformation in the 1-ring vector. This method is capable of mapping subtle facial movements without considering those shape and topological constraints. Facial expression mapping is achieved through three steps: correspondence establishment, deviation transfer and movement mapping. Deviation is transferred to the conformal face space through minimizing the error function. This function is formed by the source neutral and the deformed face model related by those transformation matrices in 1-ring neighborhood. The transformation matrix in 1-ring neighborhood is independent of the face shape and the mesh topology. After the facial expression mapping, dynamic parameters are then integrated with facial expressions for generating valid facial expressions. The dynamic parameters were generated based on psychophysical methods. The efficiency and effectiveness of the proposed methods have been tested using various face models with different shapes and topological representations

    Paving the path towards automatic hexahedral mesh generation

    Get PDF
    Esta tesis versa sobre el desarrollo de las tecnologías para la generación de mallas de hexaedros. El proceso de generar una malla de hexaedros no es automático y su generación requiere varias horas te trabajo de un ingeniero especializado. Por lo tanto, es importante desarrollar herramientas que faciliten dicho proceso de generación. Con este fin, se presenta y desarrolla un método de proyección de mallas, una técnica de sweeping o barrido, un algoritmo para la obtención de mallas por bloques, y un entorno de generación de mallas. Las implementaciones más competitivas del método de sweeping utilizan técnicas de proyección de mallas basadas en métodos afines. Los métodos afines más habituales presentan varios problemas relacionados con la obtención de sistemas de ecuaciones normales de rango deficiente. Para solucionar dichos problemas se presenta y analiza un nuevo método afín que depende de dos parámetros vectoriales. Además, se detalla un procedimiento automático para la selección de dichos vectores. El método de proyección resultante preserva la forma de las mallas proyectadas. Esta proyección es incorporada también en una nueva herramienta de sweeping. Dicha herramienta genera capas de nodos internos que respetan la curvatura de las superficies inicial y final. La herramienta de sweeping es capaz de mallar geometrías de extrusión definidas por trayectorias curvas, secciones no constantes a lo largo del eje de sweeping, y superficies inicial y final con diferente forma y curvatura.En las últimas décadas se han propuesto varios ataques para la generación automática de mallas de hexahedros. Sin embargo, todavía no existe un algoritmo rápido y robusto que genere automáticamente mallas de hexaedros de alta calidad. Se propone un nuevo ataque para la generación de mallas por bloques mediante la representación de la geometría y la topología del dual de una malla de hexaedros. En dicho ataque, primero se genera una malla grosera de tetraedros. Después, varió polígonos planos se añaden al interior de los elementos de la malla grosera inicial. Dichos polígonos se denotan como contribuciones duales locales y representan una versión discreta del dual de una malla de hexaedros. En el último paso, la malla por bloques se obtiene como el dual de la representación del dual generada. El algoritmo de generación de mallas por bloques es aplicado a geometrías que presentan diferentes características geométricas como son superficies planas, superficies curvas, configuraciones delgadas, agujeros, y vértices con valencia mayor que tres.Las mallas se generan habitualmente con la ayuda de entornos interactivos que integran una interfaz CAD y varios algoritmos de generación de mallas. Se presenta un nuevo entorno de generación de mallas especializado en la generación de cuadriláteros y hexaedros. Este entorno proporciona la tecnología necesaria para implementar les técnicas de generación de mallas de hexaedros presentadas en esta tesis.This thesis deals with the development of hexahedral mesh generation technology. The process of generating hexahedral meshes is not fully automatic and it is a time consuming task. Therefore, it is important to develop tools that facilitate the generation of hexahedral meshes. To this end, a mesh projection method, a sweeping technique, a block-meshing algorithm, and an interactive mesh generation environment are presented and developed. Competitive implementations of the sweeping method use mesh projection techniques based on affine methods. Standard affine methods have several drawbacks related to the statement of rank deficient sets of normal equations. To overcome these drawbacks a new affine method that depends on two vector parameters is presented and analyzed. Moreover, an automatic procedure that selects these two vector parameters is detailed. The resulting projection procedure preserves the shape of projected meshes. Then, this procedure is incorporated in a new sweeping tool. This tool generates inner layers of nodes that preserve the curvature of the cap surfaces. The sweeping tool is able to mesh extrusion geometries defined by non-linear sweeping trajectories, non-constant cross sections along the sweep axis, non-parallel cap surfaces, and cap surfaces with different shape and curvature. In the last decades, several general-purpose approaches to generate automatically hexahedral meshes have been proposed. However, a fast and robust algorithm that automatically generates high-quality hexahedral meshes is not available. A novel approach for block meshing by representing the geometry and the topology of a hexahedral mesh is presented. The block-meshing algorithm first generates an initial coarse mesh of tetrahedral elements. Second, several planar polygons are added inside the elements of the initial coarse mesh. These polygons are referred as local dual contributions and represent a discrete version of the dual of a hexahedral mesh. Finally, the dual representation is dualized to obtain the final block mesh. The block-meshing algorithm is applied to mesh geometries that present different geometrical characteristics such as planar surfaces, curved surfaces, thin configurations, holes, and vertices with valence greater than three.Meshes are usually generated with the help of interactive environments that integrate a CAD interface and several meshing algorithms. An overview of a new mesh generation environment focused in quadrilateral and hexahedral mesh generation is presented. This environment provides the technology required to implement the hexahedral meshing techniques presented in this thesis.Postprint (published version
    • …
    corecore