2,580 research outputs found

    Causal connectivity of evolved neural networks during behavior

    Get PDF
    To show how causal interactions in neural dynamics are modulated by behavior, it is valuable to analyze these interactions without perturbing or lesioning the neural mechanism. This paper proposes a method, based on a graph-theoretic extension of vector autoregressive modeling and 'Granger causality,' for characterizing causal interactions generated within intact neural mechanisms. This method, called 'causal connectivity analysis' is illustrated via model neural networks optimized for controlling target fixation in a simulated head-eye system, in which the structure of the environment can be experimentally varied. Causal connectivity analysis of this model yields novel insights into neural mechanisms underlying sensorimotor coordination. In contrast to networks supporting comparatively simple behavior, networks supporting rich adaptive behavior show a higher density of causal interactions, as well as a stronger causal flow from sensory inputs to motor outputs. They also show different arrangements of 'causal sources' and 'causal sinks': nodes that differentially affect, or are affected by, the remainder of the network. Finally, analysis of causal connectivity can predict the functional consequences of network lesions. These results suggest that causal connectivity analysis may have useful applications in the analysis of neural dynamics

    Measuring the World: Olfaction as a Process Model of Perception

    Get PDF
    How much does stimulus input shape perception? The common-sense view is that our perceptions are representations of objects and their features and that the stimulus structures the perceptual object. The problem for this view concerns perceptual biases as responsible for distortions and the subjectivity of perceptual experience. These biases are increasingly studied as constitutive factors of brain processes in recent neuroscience. In neural network models the brain is said to cope with the plethora of sensory information by predicting stimulus regularities on the basis of previous experiences. Drawing on this development, this chapter analyses perceptions as processes. Looking at olfaction as a model system, it argues for the need to abandon a stimulus-centred perspective, where smells are thought of as stable percepts, computationally linked to external objects such as odorous molecules. Perception here is presented as a measure of changing signal ratios in an environment informed by expectancy effects from top-down processes

    Statistical and machine learning approaches for prediction of long-time excitation energy transfer dynamics

    Full text link
    One of the approaches used to solve for the dynamics of open quantum systems is the hierarchical equations of motion (HEOM). Although it is numerically exact, this method requires immense computational resources to solve. The objective here is to demonstrate whether models such as SARIMA, CatBoost, Prophet, convolutional and recurrent neural networks are able to bypass this requirement. We are able to show this successfully by first solving the HEOM to generate a data set of time series that depict the dissipative dynamics of excitation energy transfer in photosynthetic systems then, we use this data to test the models ability to predict the long-time dynamics when only the initial short-time dynamics is given. Our results suggest that the SARIMA model can serve as a computationally inexpensive yet accurate way to predict long-time dynamics

    Modeling and analysis of actual evapotranspiration using data driven and wavelet techniques

    Get PDF
    Large-scale mining practices have disturbed many natural watersheds in northern Alberta, Canada. To restore disturbed landscapes and ecosystems’ functions, reconstruction strategies have been adopted with the aim of establishing sustainable reclaimed lands. The success of the reconstruction process depends on the design of reconstruction strategies, which can be optimized by improving the understanding of the controlling hydrological processes in the reconstructed watersheds. Evapotranspiration is one of the important components of the hydrological cycle; its estimation and analysis are crucial for better assessment of the reconstructed landscape hydrology, and for more efficient design. The complexity of the evapotranspiration process and its variability in time and space has imposed some limitations on previously developed evapotranspiration estimation models. The vast majority of the available models estimate the rate of potential evapotranspiration, which occurs under unlimited water supply condition. However, the rate of actual evapotranspiration (AET) depends on the available soil moisture, which makes its physical modeling more complicated than the potential evapotranspiration. The main objective of this study is to estimate and analyze the AET process in a reconstructed landscape. Data driven techniques can model the process without having a complete understanding of its physics. In this study, three data driven models; genetic programming (GP), artificial neural networks (ANNs), and multilinear regression (MLR), were developed and compared for estimating the hourly eddy covariance (EC)-measured AET using meteorological variables. The AET was modeled as a function of five meteorological variables: net radiation (Rn), ground temperature (Tg), air temperature (Ta), relative humidity (RH), and wind speed (Ws) in a reconstructed landscape located in northern Alberta, Canada. Several ANN models were evaluated using two training algorithms of Levenberg-Marquardt and Bayesian regularization. The GP technique was employed to generate mathematical equations correlating AET to the five meteorological variables. Furthermore, the available data were statistically analyzed to obtain MLR models and to identify the meteorological variables that have significant effect on the evapotranspiration process. The utility of the investigated data driven models was also compared with that of HYDRUS-1D model, which is a physically based model that makes use of conventional Penman-Monteith (PM) method for the prediction of AET. HYDRUS-1D model was examined for estimating AET using meteorological variables, leaf area index, and soil moisture information. Furthermore, Wavelet analysis (WA), as a multiresolution signal processing tool, was examined to improve the understanding of the available time series temporal variations, through identifying the significant cyclic features, and to explore the possible correlation between AET and the meteorological signals. WA was used with the purpose of input determination of AET models, a priori. The results of this study indicated that all three proposed data driven models were able to approximate the AET reasonably well; however, GP and MLR models had better generalization ability than the ANN model. GP models demonstrated that the complex process of hourly AET can be efficiently modeled as simple semi-linear functions of few meteorological variables. The results of HYDRUS-1D model exhibited that a physically based model, such as HYDRUS-1D, might perform on par or even inferior to the data driven models in terms of the overall prediction accuracy. The developed equation-based models; GP and MLR, revealed the larger contribution of net radiation and ground temperature, compared to other variables, to the estimation of AET. It was also found that the interaction effects of meteorological variables are important for the AET modeling. The results of wavelet analysis demonstrated the presence of both small-scale (2 to 8 hours) and larger-scale (e.g. diurnal) cyclic features in most of the investigated time series. Larger-scale cyclic features were found to be the dominant source of temporal variations in the AET and most of the meteorological variables. The results of cross wavelet analysis indicated that the cause and effect relationship between AET and the meteorological variables might vary based on the time-scale of variation under consideration. At small time-scales, significant linear correlations were observed between AET and Rn, RH, and Ws time series, while at larger time-scales significant linear correlations were observed between AET and Rn, RH, Tg, and Ta time series

    Hydrologic prediction using pattern recognition and soft-computing techniques

    Get PDF
    Several studies indicate that the data-driven models have proven to be potentially useful tools in hydrological modeling. Nevertheless, it is a common perception among researchers and practitioners that the usefulness of the system theoretic models is limited to forecast applications, and they cannot be used as a tool for scientific investigations. Also, the system-theoretic models are believed to be less reliable as they characterize the hydrological processes by learning the input-output patterns embedded in the dataset and not based on strong physical understanding of the system. It is imperative that the above concerns needs to be addressed before the data-driven models can gain wider acceptability by researchers and practitioners.In this research different methods and tools that can be adopted to promote transparency in the data-driven models are probed with the objective of extending the usefulness of data-driven models beyond forecast applications as a tools for scientific investigations, by providing additional insights into the underlying input-output patterns based on which the data-driven models arrive at a decision. In this regard, the utility of self-organizing networks (competitive learning and self-organizing maps) in learning the patterns in the input space is evaluated by developing a novel neural network model called the spiking modular neural networks (SMNNs). The performance of the SMNNs is evaluated based on its ability to characterize streamflows and actual evapotranspiration process. Also the utility of self-organizing algorithms, namely genetic programming (GP), is evaluated with regards to its ability to promote transparency in data-driven models. The robustness of the GP to evolve its own model structure with relevant parameters is illustrated by applying GP to characterize the actual-evapotranspiration process. The results from this research indicate that self-organization in learning, both in terms of self-organizing networks and self-organizing algorithms, could be adopted to promote transparency in data-driven models.In pursuit of improving the reliability of the data-driven models, different methods for incorporating uncertainty estimates as part of the data-driven model building exercise is evaluated in this research. The local-scale models are shown to be more reliable than the global-scale models in characterizing the saturated hydraulic conductivity of soils. In addition, in this research, the importance of model structure uncertainty in geophysical modeling is emphasized by developing a framework to account for the model structure uncertainty in geophysical modeling. The contribution of the model structure uncertainty to the predictive uncertainty of the model is shown to be larger than the uncertainty associated with the model parameters. Also it has been demonstrated that increasing the model complexity may lead to a better fit of the function, but at the cost of an increasing level of uncertainty. It is recommended that the effect of model structure uncertainty should be considered for developing reliable hydrological models

    Evolving Multilevel Forecast Combination Models - An Experimental Study

    Get PDF
    This paper provides a description and experimental comparison of different forecast combination techniques for the application of Revenue Management forecasting for Airlines. In order to benefit from the advantages of forecasts predicting seasonal demand using different forecast models on different aggregation levels and to reduce the risks of high noise terms on low level predictions and overgeneralization on higher levels, various approaches based on combination of many predictions are presented and experimentally compared. We propose to evolve combination structures dynamically using Evolutionary Computing approaches. The evolved structures are not only able to generate predictions representing well balanced and stable fusions of methods and levels, they are also characterised by high adaptive capabilities. The focus on different levels or methods of forecasting may change as well as the complexity of the combination structure depending on changes in parts of the input data space in different data aggregation levels. Significant forecast improvements have been obtained when using the proposed dynamic multilevel structures
    • 

    corecore