30,915 research outputs found

    Structural similarity assessment for drug sensitivity prediction in cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ability to predict drug sensitivity in cancer is one of the exciting promises of pharmacogenomic research. Several groups have demonstrated the ability to predict drug sensitivity by integrating chemo-sensitivity data and associated gene expression measurements from large anti-cancer drug screens such as NCI-60. The general approach is based on comparing gene expression measurements from sensitive and resistant cancer cell lines and deriving drug sensitivity profiles consisting of lists of genes whose expression is predictive of response to a drug. Importantly, it has been shown that such profiles are generic and can be applied to cancer cell lines that are not part of the anti-cancer screen. However, one limitation is that the profiles can not be generated for untested drugs (i.e., drugs that are not part of an anti-cancer drug screen). In this work, we propose using an existing drug sensitivity profile for drug A as a substitute for an untested drug B given high structural similarities between drugs A and B.</p> <p>Results</p> <p>We first show that structural similarity between pairs of compounds in the NCI-60 dataset highly correlates with the similarity between their activities across the cancer cell lines. This result shows that structurally similar drugs can be expected to have a similar effect on cancer cell lines. We next set out to test our hypothesis that we can use existing drug sensitivity profiles as substitute profiles for untested drugs. In a cross-validation experiment, we found that the use of substitute profiles is possible without a significant loss of prediction accuracy if the substitute profile was generated from a compound with high structural similarity to the untested compound.</p> <p>Conclusion</p> <p>Anti-cancer drug screens are a valuable resource for generating omics-based drug sensitivity profiles. We show that it is possible to extend the usefulness of existing screens to untested drugs by deriving substitute sensitivity profiles from structurally similar drugs part of the screen.</p

    Structural Prediction of Protein–Protein Interactions by Docking: Application to Biomedical Problems

    Get PDF
    A huge amount of genetic information is available thanks to the recent advances in sequencing technologies and the larger computational capabilities, but the interpretation of such genetic data at phenotypic level remains elusive. One of the reasons is that proteins are not acting alone, but are specifically interacting with other proteins and biomolecules, forming intricate interaction networks that are essential for the majority of cell processes and pathological conditions. Thus, characterizing such interaction networks is an important step in understanding how information flows from gene to phenotype. Indeed, structural characterization of protein–protein interactions at atomic resolution has many applications in biomedicine, from diagnosis and vaccine design, to drug discovery. However, despite the advances of experimental structural determination, the number of interactions for which there is available structural data is still very small. In this context, a complementary approach is computational modeling of protein interactions by docking, which is usually composed of two major phases: (i) sampling of the possible binding modes between the interacting molecules and (ii) scoring for the identification of the correct orientations. In addition, prediction of interface and hot-spot residues is very useful in order to guide and interpret mutagenesis experiments, as well as to understand functional and mechanistic aspects of the interaction. Computational docking is already being applied to specific biomedical problems within the context of personalized medicine, for instance, helping to interpret pathological mutations involved in protein–protein interactions, or providing modeled structural data for drug discovery targeting protein–protein interactions.Spanish Ministry of Economy grant number BIO2016-79960-R; D.B.B. is supported by a predoctoral fellowship from CONACyT; M.R. is supported by an FPI fellowship from the Severo Ochoa program. We are grateful to the Joint BSC-CRG-IRB Programme in Computational Biology.Peer ReviewedPostprint (author's final draft

    Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach

    Full text link
    Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases

    Hybrid Computational Toxicology Models for Regulatory Risk Assessment

    Get PDF
    Computational toxicology is the development of quantitative structure activity relationship (QSAR) models that relate a quantitative measure of chemical structure to a biological effect. In silico QSAR tools are widely accepted as a faster alternative to time-consuming clinical and animal testing methods for regulatory risk assessment of xenobiotics used in consumer products. However, different QSAR tools often make contrasting predictions for a new xenobiotic and may also vary in their predictive ability for different class of xenobiotics. This makes their use challenging, especially in regulatory applications, where transparency and interpretation of predictions play a crucial role in the development of safety assessment decisions. Recent efforts in computational toxicology involve the use of in vitro data, which enables better insight into the mode of action of xenobiotics and identification of potential mechanism(s) of toxicity. To ensure that in silico models are robust and reliable before they can be used for regulatory applications, the registration, evaluation, authorization and restriction of chemicals (REACH) initiative and the organization for economic co-operation and development (OECD) have established legislative guidelines for their validation. This dissertation addresses the limitations in the use of current QSAR tools for regulatory risk assessment within REACH/OECD guidelines. The first contribution is an ensemble model that combines the predictions from four QSAR tools for improving the quality of predictions. The model presents a novel mechanism to select a desired trade-off between false positive and false negative predictions. The second contribution is the introduction of quantitative biological activity relationship (QBAR) models that use mechanistically relevant in vitro data as biological descriptors for development of computational toxicology models. Two novel applications are presented that demonstrate that QBAR models can sufficiently predict carcinogenicity when QSAR model predictions may fail. The third contribution is the development of two novel methods which explore the synergistic use of structural and biological similarity data for carcinogenicity prediction. Two applications are presented that demonstrate the feasibility of proposed methods within REACH/OECD guidelines. These contributions lay the foundation for development of novel mechanism based in silico tools for mechanistically complex toxic endpoints to successfully advance the field of computational toxicology

    Integration of Toxicity Data from Experiments and Non-Testing Methods within a Weight of Evidence Procedure

    Get PDF
    Assessment of human health and environmental risk is based on multiple sources of information, requiring the integration of the lines of evidence in order to reach a conclusion. There is an increasing need for data to fill the gaps and new methods for the data integration. From a regulatory point of view, risk assessors take advantage of all the available data by means of weight of evidence (WOE) and expert judgement approaches to develop conclusions about the risk posed by chemicals and also nanoparticles. The integration of the physico-chemical properties and toxicological effects shed light on relationships between the molecular properties and biological effects, leading us to non-testing methods. (Quantitative) structure-activity relationship ((Q)SAR) and read-across are examples of non-testing methods. In this dissertation, (i) two new structure-based carcinogenicity models, (ii) ToxDelta, a new read-across model for mutagenicity endpoint and (iii) a genotoxicity model for the metal oxide nanoparticles are introduced. Within the latter section, best professional judgement method is employed for the selection of reliable data from scientific publications to develop a data base of nanomaterials with their genotoxicity effect. We developed a decision tree model for the classification of these nanomaterials. The (Q)SAR models used in qualitative WOE approaches mainly lack transparency resulting in risk estimates needing quantified uncertainties. Our two structure-based carcinogenicity models, provide transparent reasoning in their predictions. Additionally, ToxDelta provides better supported techniques in read-across terms based on the analysis of the differences of the molecules structures. We propose a basic qualitative WOE framework that couples the in silico models predictions with the inspections of the similar compounds. We demonstrate the application of this framework to two realistic case studies, and discuss how to deal with different and sometimes conflicting data obtained from various in silico models in qualitative WOE terms to facilitate structured and transparent development of answers to scientific questions

    Deriving a mutation index of carcinogenicity using protein structure and protein interfaces

    Get PDF
    With the advent of Next Generation Sequencing the identification of mutations in the genomes of healthy and diseased tissues has become commonplace. While much progress has been made to elucidate the aetiology of disease processes in cancer, the contributions to disease that many individual mutations make remain to be characterised and their downstream consequences on cancer phenotypes remain to be understood. Missense mutations commonly occur in cancers and their consequences remain challenging to predict. However, this knowledge is becoming more vital, for both assessing disease progression and for stratifying drug treatment regimes. Coupled with structural data, comprehensive genomic databases of mutations such as the 1000 Genomes project and COSMIC give an opportunity to investigate general principles of how cancer mutations disrupt proteins and their interactions at the molecular and network level. We describe a comprehensive comparison of cancer and neutral missense mutations; by combining features derived from structural and interface properties we have developed a carcinogenicity predictor, InCa (Index of Carcinogenicity). Upon comparison with other methods, we observe that InCa can predict mutations that might not be detected by other methods. We also discuss general limitations shared by all predictors that attempt to predict driver mutations and discuss how this could impact high-throughput predictions. A web interface to a server implementation is publicly available at http://inca.icr.ac.uk/
    • …
    corecore