125,708 research outputs found

    A Complete Axiomatisation for Quantifier-Free Separation Logic

    Full text link
    We present the first complete axiomatisation for quantifier-free separation logic. The logic is equipped with the standard concrete heaplet semantics and the proof system has no external feature such as nominals/labels. It is not possible to rely completely on proof systems for Boolean BI as the concrete semantics needs to be taken into account. Therefore, we present the first internal Hilbert-style axiomatisation for quantifier-free separation logic. The calculus is divided in three parts: the axiomatisation of core formulae where Boolean combinations of core formulae capture the expressivity of the whole logic, axioms and inference rules to simulate a bottom-up elimination of separating connectives, and finally structural axioms and inference rules from propositional calculus and Boolean BI with the magic wand

    Call-by-name, call-by-value, call-by-need and the linear lambda calculus

    Get PDF
    this paper is a minor refinement of one previously presented by Wadler [41,42], which is based on Girard's successor to linear logic, the Logic of Unity [15]. A similar calculus has been devised by Plotkin and Barber [6]. In many presentations of logic a key role is played by the structural rules: contraction provides the only way to duplicate an assumption, while weakening provides the only way to discard one. In linear logic [14], the presence of contraction or weakening is revealed in a formula by the presence of the `of course' connective, written `!'. The Logic of Unity [15] takes this separation one step further by distinguishing linear assumptions, which one cannot contract or weaken, from nonlinear or intuitionistic assumptions, which one can. Corresponding to Girard's first translation we define a mapping ffi from the call-byname to the linear calculus and show that this mapping is sound, in that M \Gamma\Gamma\Gamma\Gamma

    Spatial Logics for Bigraphs

    No full text
    Bigraphs are emerging as an interesting model for concurrent calculi, like CCS, pi-calculus, and Petri nets. Bigraphs are built orthogonally on two structures: a hierarchical place graph for locations and a link (hyper-)graph for connections. With the aim of describing bigraphical structures, we introduce a general framework for logics whose terms represent arrows in monoidal categories. We then instantiate the framework to bigraphical structures and obtain a logic that is a natural composition of a place graph logic and a link graph logic. We explore the concepts of separation and sharing in these logics and we prove that they generalise some known spatial logics for trees, graphs and tree contexts

    Semantics of Separation-Logic Typing and Higher-order Frame Rules for<br> Algol-like Languages

    Full text link
    We show how to give a coherent semantics to programs that are well-specified in a version of separation logic for a language with higher types: idealized algol extended with heaps (but with immutable stack variables). In particular, we provide simple sound rules for deriving higher-order frame rules, allowing for local reasoning
    corecore