5,323 research outputs found

    Complete Inverse Method Using Ant Colony Optimization Algorithm for Structural Parameters and Excitation Identification from Output Only Measurements

    Get PDF
    In vibration-based structural health monitoring of existing large civil structures, it is difficult, sometimes even impossible, to measure the actual excitation applied to structures. Therefore, an identification method using output-only measurements is crucial for the practical application of structural health monitoring. This paper integrates the ant colony optimization (ACO) algorithm into the framework of the complete inverse method to simultaneously identify unknown structural parameters and input time history using output-only measurements. The complete inverse method, which was previously suggested by the authors, converts physical or spatial information of the unknown input into the objective function of an optimization problem that can be solved by the ACO algorithm. ACO is a newly developed swarm computation method that has a very good performance in solving complex global continuous optimization problems. The principles and implementation procedure of the ACO algorithm are first introduced followed by an introduction of the framework of the complete inverse method. Construction of the objective function is then described in detail with an emphasis on the common situation wherein a limited number of actuators are installed on some key locations of the structure. Applicability and feasibility of the proposed method were validated by numerical examples and experimental results from a three-story building model

    Prescriptions for Excellence in Healthcare Winter 2010 dowload full pdf

    Get PDF

    Optimization-Based Evolutionary Data Mining Techniques for Structural Health Monitoring

    Get PDF
    In recent years, data mining technology has been employed to solve various Structural Health Monitoring (SHM) problems as a comprehensive strategy because of its computational capability. Optimization is one the most important functions in Data mining. In an engineering optimization problem, it is not easy to find an exact solution. In this regard, evolutionary techniques have been applied as a part of procedure of achieving the exact solution. Therefore, various metaheuristic algorithms have been developed to solve a variety of engineering optimization problems in SHM. This study presents the most applicable as well as effective evolutionary techniques used in structural damage identification. To this end, a brief overview of metaheuristic techniques is discussed in this paper. Then the most applicable optimization-based algorithms in structural damage identification are presented, i.e. Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Imperialist Competitive Algorithm (ICA) and Ant Colony Optimization (ACO). Some related examples are also detailed in order to indicate the efficiency of these algorithms

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Damage identification by a modified Ant Colony Optimization for not well spaced frequency systems

    Get PDF
    Recently, it has been shown , that a damage detection strategy based on a proper functional calculated on the analytical signal of the structural dynamical response, consents to identify very low damage level. In this regard, they stressed the efficiency of Hilbert Transform to obtain the analytical response representation that shows more sensitivity for predicting damage with respect to the simple signal response. Then, a damage identification procedure based on the minimization of the difference between theoretical and measured data was proposed with satisfactory results. Unfortunately, this procedure, since the need of use of band pass filter around the natural frequency of the system, fails for structures having closed natural frequencies. By the way, performing procedures for sharply detecting damage in not well spaced frequency structure is a hoary problem. Aim of this paper is to extend the aforementioned procedure to these systems. To aim at this, it is desirable to go further insight into optimization algorithms, suitable for this kind of systems. For instance, it will be interesting considering, the ant colony optimization algorithm (ACO) that is a probabilistic technique for solving computational problems which can be reduced to finding good paths through graphs. Recently ACO has been extended to continuous domain and labeled as ACOĂ°. A novel aspect of the proposed paper is introducing ACOĂ° into the previous procedure avoiding the use of filters, such that may be available for not well spaced frequency system. Moreover, it will be desirable avoiding the use of Hilbert transform, that means apply the identification procedure directly on the acceleration responses and not on the analytical signal response. Therefore, in this paper it will be introduced a procedure for detecting damage in structures having close frequencies, without using analytical signal response

    Design framework for multifunctional additive manufacturing: placement and routing of three-dimensional printed circuit volumes

    Get PDF
    A framework for the design of additively manufactured (AM) multimaterial parts with embedded functional systems is presented (e.g., structure with electronic/electrical components and associated conductive paths). Two of the key strands of this proposed framework are placement and routing strategies, which consist of techniques to exploit the true-3D design freedoms of multifunctional AM (MFAM) to create 3D printed circuit volumes (PCVs). Example test cases are presented, which demonstrate the appropriateness and effectiveness of the proposed techniques. The aim of the proposed design framework is to enable exploitation of the rapidly developing capabilities of multimaterial AM

    An efficient genetic algorithm for large-scale transmit power control of dense and robust wireless networks in harsh industrial environments

    Get PDF
    The industrial wireless local area network (IWLAN) is increasingly dense, due to not only the penetration of wireless applications to shop floors and warehouses, but also the rising need of redundancy for robust wireless coverage. Instead of simply powering on all access points (APs), there is an unavoidable need to dynamically control the transmit power of APs on a large scale, in order to minimize interference and adapt the coverage to the latest shadowing effects of dominant obstacles in an industrial indoor environment. To fulfill this need, this paper formulates a transmit power control (TPC) model that enables both powering on/off APs and transmit power calibration of each AP that is powered on. This TPC model uses an empirical one-slope path loss model considering three-dimensional obstacle shadowing effects, to enable accurate yet simple coverage prediction. An efficient genetic algorithm (GA), named GATPC, is designed to solve this TPC model even on a large scale. To this end, it leverages repair mechanism-based population initialization, crossover and mutation, parallelism as well as dedicated speedup measures. The GATPC was experimentally validated in a small-scale IWLAN that is deployed a real industrial indoor environment. It was further numerically demonstrated and benchmarked on both small- and large-scales, regarding the effectiveness and the scalability of TPC. Moreover, sensitivity analysis was performed to reveal the produced interference and the qualification rate of GATPC in function of varying target coverage percentage as well as number and placement direction of dominant obstacles. (C) 2018 Elsevier B.V. All rights reserved

    High Performance Accountable Care: Building on Success and Learning From Experience

    Get PDF
    Presents the rationale for creating accountable care organizations, promising models, and the Commonwealth Fund Commission on a High Performance Health System's recommendations for implementing ACOs widely to achieve improved quality and efficiency

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms
    • …
    corecore