298 research outputs found

    OPTIMAL AREA AND PERFORMANCE MAPPING OF K-LUT BASED FPGAS

    Get PDF
    FPGA circuits are increasingly used in many fields: for rapid prototyping of new products (including fast ASIC implementation), for logic emulation, for producing a small number of a device, or if a device should be reconfigurable in use (reconfigurable computing). Determining if an arbitrary, given wide, function can be implemented by a programmable logic block, unfortunately, it is generally, a very difficult problem. This problem is called the Boolean matching problem. This paper introduces a new implemented algorithm able to map, both for area and performance, combinational networks using k-LUT based FPGAs.k-LUT based FPGAs, combinational circuits, performance-driven mapping.

    Support-reducing decomposition for FPGA mapping

    Get PDF
    Decomposition is a technology-independent process, in which a large complex function is broken into smaller, less complex functions. The costs of two-level or factored-form representations (cubes and literals) are used in most decomposition methods, as they have a high correlation with the area of cell-based designs. However, this correlation is weaker for field-programmable gate arrays (FPGAs) based on look-up tables. Furthermore, local optimizations have limited power due to the structural bias of the circuit descriptions. This paper tries to reduce the structural biasing by remapping the LUT network and decomposing the derived functions using the support as cost function. The proposed method improves the FPGA mapping results of a commercial tool for the 20 largest MCNC benchmarks, with gains of 28% in delay plus 18% in area when targeting delay, and a reduction of 28% in area plus 14% in delay with area as cost function. Results with 23% less area and 6% less delay are obtained after physical synthesis (post place-and-route). Moreover, 12 of the best known results for delay (and 3 for area) of the EPFL benchmarks are improved.Peer ReviewedPostprint (author's final draft

    RASP: A General Logic Synthesis System for SRAM-Based FPGAs

    Full text link

    Post-mapping Topology Rewriting for FPGA Area Minimization

    Get PDF
    Circuit designers require Computer-Aided Design (CAD) tools when compiling designs into Field Programmable Gate Arrays (FPGAs) in order to achieve high quality results due to the complexity of the compilation tasks involved. Technology mapping is one critical step in the FPGA CAD flow. The final mapping result has significant impact on the subsequent steps of clustering, placement and routing, for the objectives of delay, area and power dissipation. While depth-optimal FPGA technology mapping can be solved in polynomial time, area minimization has proven to be NP-hard. Most modern state-of-the-art FPGA technology mappers are structural in nature; they are based on cut enumeration and use various heuristics to yield depth and area minimized solutions. However, the results produced by structural technology mappers rely strongly on the structure of the input netlists. Hence, it is common to apply additional heuristics after technology mapping to further optimize area and reduce the amount of structural bias while not harming depth. Recently, SAT-based Boolean matching has been used for post-mapping area minimization. However, SAT-based matching is computationally complex and too time consuming in practice. This thesis proposes an alternative Boolean matching approach based on NPN equivalence. Using a library of pre-computed topologies, the matching problem becomes as simple as performing NPN encoding followed by a hash lookup which is very efficient. In conjunction with Ashenhurst decomposition, the NPN-based Boolean matching is allowed to handle up to 10-input Boolean functions. When applied to a large set of designs, the proposed algorithm yields, on average, more than 3% reduction in circuit area without harming circuit depth. The priori generation of a library of topologies can be difficult; the potential difficulty in generating a library of topologies represents one limitation of the proposed algorithm

    Hardware design and CAD for processor-based logic emulation systems.

    Get PDF

    Energy-Efficient Digital Circuit Design using Threshold Logic Gates

    Get PDF
    abstract: Improving energy efficiency has always been the prime objective of the custom and automated digital circuit design techniques. As a result, a multitude of methods to reduce power without sacrificing performance have been proposed. However, as the field of design automation has matured over the last few decades, there have been no new automated design techniques, that can provide considerable improvements in circuit power, leakage and area. Although emerging nano-devices are expected to replace the existing MOSFET devices, they are far from being as mature as semiconductor devices and their full potential and promises are many years away from being practical. The research described in this dissertation consists of four main parts. First is a new circuit architecture of a differential threshold logic flipflop called PNAND. The PNAND gate is an edge-triggered multi-input sequential cell whose next state function is a threshold function of its inputs. Second a new approach, called hybridization, that replaces flipflops and parts of their logic cones with PNAND cells is described. The resulting \hybrid circuit, which consists of conventional logic cells and PNANDs, is shown to have significantly less power consumption, smaller area, less standby power and less power variation. Third, a new architecture of a field programmable array, called field programmable threshold logic array (FPTLA), in which the standard lookup table (LUT) is replaced by a PNAND is described. The FPTLA is shown to have as much as 50% lower energy-delay product compared to conventional FPGA using well known FPGA modeling tool called VPR. Fourth, a novel clock skewing technique that makes use of the completion detection feature of the differential mode flipflops is described. This clock skewing method improves the area and power of the ASIC circuits by increasing slack on timing paths. An additional advantage of this method is the elimination of hold time violation on given short paths. Several circuit design methodologies such as retiming and asynchronous circuit design can use the proposed threshold logic gate effectively. Therefore, the use of threshold logic flipflops in conventional design methodologies opens new avenues of research towards more energy-efficient circuits.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    LUT Mapping and Optimization for Majority-Inverter Graphs

    Get PDF
    A Majority-Inverter Graph (MIG) is a directed acyclic graph in which every vertex represents a three-input majority operation and edges may be complemented to indicate operand inversion. MIGs have algebraic and Boolean properties that enable efficient logic optimization. They have been shown to obtain superior synthesis results as compared to state-of-the- art And-Inverter Graph (AIG) based algorithms. In this paper, we extend MIGs to Functionally Reduced MIGs (FRMIGs), analogous to the extension of AIGs to Functionally Reduced AIGs (FRAIGs). This enables the use of MIGs in a lossless synthesis design flow. We present an FRMIG based technology mapper for lookup tables (LUTs). Any MIG may be mapped to a k- LUT network. Using exact synthesis we may decompose the k- LUT network back into an equivalent MIG. We show how LUT mapping and exact k-LUT decomposition can be used to create an MIG optimization method. Finally, we present the results of applying our new optimization method and LUT mapper to both logic optimization and technology mapping
    • …
    corecore