39,938 research outputs found

    Non-Destructive Inspection of Impact Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing.

    Get PDF
    This paper discusses a non-destructive evaluation (NDE) technique for the detection of damage in composite aircraft structures following high energy wide area blunt impact (HEWABI) from ground service equipment (GSE), such as heavy cargo loaders and other heavy equipment. The test structures typically include skin, co-cured stringers, and C-frames that are bolt-connected onto the skin with shear ties. The inspection exploits the waveguide geometry of these structures by utilizing ultrasonic guided waves and a line scan approach. Both a contact prototype and a non-contact prototype were developed and tested on realistic test panels subjected to impact in the laboratory. The results are presented in terms of receiver operating characteristic curves that show excellent probability of detection with low false alarm rates for defects located in the panel skin and stringers

    Automated beam builder

    Get PDF
    Requirements for the space fabrication of large space structures are considered with emphasis on the design, development, manufacture, and testing of a machine which automatically produces a basic building block aluminum beam. Particular problems discussed include those associated with beam cap forming; brace storage, dispensing, and transporting; beam component fastening; and beam cut-off. Various critical process tests conducted to develop technology for a machine to produce composite beams are also discussed

    Television broadcast satellite study research and technology implications report

    Get PDF
    Feasibility of future television broadcasting satellite

    Solar power satellite system definition study. Volume 1, phase 1: Executive summary

    Get PDF
    A systems definition study of the solar satellite system (SPS) is presented. The technical feasibility of solar power satellites based on forecasts of technical capability in the various applicable technologies is assessed. The performance, cost, operational characteristics, reliability, and the suitability of SPS's as power generators for typical commercial electricity grids are discussed. The uncertainties inherent in the system characteristics forecasts are assessed

    Improving Loss Estimation for Woodframe Buildings. Volume 2: Appendices

    Get PDF
    This report documents Tasks 4.1 and 4.5 of the CUREE-Caltech Woodframe Project. It presents a theoretical and empirical methodology for creating probabilistic relationships between seismic shaking severity and physical damage and loss for buildings in general, and for woodframe buildings in particular. The methodology, called assembly-based vulnerability (ABV), is illustrated for 19 specific woodframe buildings of varying ages, sizes, configuration, quality of construction, and retrofit and redesign conditions. The study employs variations on four basic floorplans, called index buildings. These include a small house and a large house, a townhouse and an apartment building. The resulting seismic vulnerability functions give the probability distribution of repair cost as a function of instrumental ground-motion severity. These vulnerability functions are useful by themselves, and are also transformed to seismic fragility functions compatible with the HAZUS software. The methods and data employed here use well-accepted structural engineering techniques, laboratory test data and computer programs produced by Element 1 of the CUREE-Caltech Woodframe Project, other recently published research, and standard construction cost-estimating methods. While based on such well established principles, this report represents a substantially new contribution to the field of earthquake loss estimation. Its methodology is notable in that it calculates detailed structural response using nonlinear time-history structural analysis as opposed to the simplifying assumptions required by nonlinear pushover methods. It models physical damage at the level of individual building assemblies such as individual windows, segments of wall, etc., for which detailed laboratory testing is available, as opposed to two or three broad component categories that cannot be directly tested. And it explicitly models uncertainty in ground motion, structural response, component damageability, and contractor costs. Consequently, a very detailed, verifiable, probabilistic picture of physical performance and repair cost is produced, capable of informing a variety of decisions regarding seismic retrofit, code development, code enforcement, performance-based design for above-code applications, and insurance practices

    System test approach for the SAX satellite

    Get PDF
    SAX satellite verification is based on a protoflight approach, in which only one system model is realized at flight standard level, taking into account the utilization of hardware already qualified for other space programs and the necessity to respect the schedule constraints for a scientific objective. In any case, this approach was tailored with some deviations in order to reduce risks inherent in such a choice. The protoflight approach was also pursued at subsystem/unit level in particular for those subsystems and units considered critical from the schedule point of view. Payload Instruments followed the same approach but complete spare units were developed to reduce the risks associated with such an approach. A description of the model philosophy is provided and then, at satellite level, the testing approach and rationale for each model is presented. Finally, a brief description of each test will be given, highlighting objectives, methodologies, and test configurations. Moreover, for the major tests, problems encountered and solutions applied in establishing a correct approach are described

    Advanced coatings through pulsed magnetron sputtering

    Get PDF
    Pulsed magnetron sputtering (PMS) has become established as the process of choice for the deposition of dielectric materials for many applications. The process is attractive because it offers stable arc free operating conditions during the deposition of, for example, functional films on architectural and automotive glass, or antireflective/antistatic coatings on displays. Recent studies have shown that pulsing the magnetron discharge also leads to hotter and more energetic plasmas in comparison with continuous dc discharges, with increased ion energy fluxes delivered to the substrate. As such, the PMS process offers benefits in the deposition of a wide range of materials. The present paper describes three examples where PMS has led to either significant enhancement in film properties or enhanced process flexibility: in low friction titanium nitride coatings, in Al doped zinc oxide transparent conductive oxide coatings sputtered directly from powder targets and in thin film photovoltaic devices based on copper (indium/gallium) diselenide. These examples demonstrate the versatility of PMS and open up new opportunities for the production of advanced coatings using this technique

    Assessment and control of spacecraft electromagnetic interference

    Get PDF
    Design criteria are presented to provide guidance in assessing electromagnetic interference from onboard sources and establishing requisite control in spacecraft design, development, and testing. A comprehensive state-of-the-art review is given which covers flight experience, sources and transmission of electromagnetic interference, susceptible equipment, design procedure, control techniques, and test methods

    Viking '75 spacecraft design and test summary. Volume 3: Engineering test summary

    Get PDF
    The engineering test program for the lander and the orbiter are presented. The engineering program was developed to achieve confidence that the design was adequate to survive the expected mission environments and to accomplish the mission objective

    High-speed civil transport flight- and propulsion-control technological issues

    Get PDF
    Technology advances required in the flight and propulsion control system disciplines to develop a high speed civil transport (HSCT) are identified. The mission and requirements of the transport and major flight and propulsion control technology issues are discussed. Each issue is ranked and, for each issue, a plan for technology readiness is given. Certain features are unique and dominate control system design. These features include the high temperature environment, large flexible aircraft, control-configured empennage, minimizing control margins, and high availability and excellent maintainability. The failure to resolve most high-priority issues can prevent the transport from achieving its goals. The flow-time for hardware may require stimulus, since market forces may be insufficient to ensure timely production. Flight and propulsion control technology will contribute to takeoff gross weight reduction. Similar technology advances are necessary also to ensure flight safety for the transport. The certification basis of the HSCT must be negotiated between airplane manufacturers and government regulators. Efficient, quality design of the transport will require an integrated set of design tools that support the entire engineering design team
    • …
    corecore