6,833 research outputs found

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    BlogForever D2.6: Data Extraction Methodology

    Get PDF
    This report outlines an inquiry into the area of web data extraction, conducted within the context of blog preservation. The report reviews theoretical advances and practical developments for implementing data extraction. The inquiry is extended through an experiment that demonstrates the effectiveness and feasibility of implementing some of the suggested approaches. More specifically, the report discusses an approach based on unsupervised machine learning that employs the RSS feeds and HTML representations of blogs. It outlines the possibilities of extracting semantics available in blogs and demonstrates the benefits of exploiting available standards such as microformats and microdata. The report proceeds to propose a methodology for extracting and processing blog data to further inform the design and development of the BlogForever platform

    Self-supervised automated wrapper generation for weblog data extraction

    Get PDF
    Data extraction from the web is notoriously hard. Of the types of resources available on the web, weblogs are becoming increasingly important due to the continued growth of the blogosphere, but remain poorly explored. Past approaches to data extraction from weblogs have often involved manual intervention and suffer from low scalability. This paper proposes a fully automated information extraction methodology based on the use of web feeds and processing of HTML. The approach includes a model for generating a wrapper that exploits web feeds for deriving a set of extraction rules automatically. Instead of performing a pairwise comparison between posts, the model matches the values of the web feeds against their corresponding HTML elements retrieved from multiple weblog posts. It adopts a probabilistic approach for deriving a set of rules and automating the process of wrapper generation. An evaluation of the model is conducted on a dataset of 2,393 posts and the results (92% accuracy) show that the proposed technique enables robust extraction of weblog properties and can be applied across the blogosphere for applications such as improved information retrieval and more robust web preservation initiatives

    Updates in metabolomics tools and resources: 2014-2015

    Get PDF
    Data processing and interpretation represent the most challenging and time-consuming steps in high-throughput metabolomic experiments, regardless of the analytical platforms (MS or NMR spectroscopy based) used for data acquisition. Improved machinery in metabolomics generates increasingly complex datasets that create the need for more and better processing and analysis software and in silico approaches to understand the resulting data. However, a comprehensive source of information describing the utility of the most recently developed and released metabolomics resources—in the form of tools, software, and databases—is currently lacking. Thus, here we provide an overview of freely-available, and open-source, tools, algorithms, and frameworks to make both upcoming and established metabolomics researchers aware of the recent developments in an attempt to advance and facilitate data processing workflows in their metabolomics research. The major topics include tools and researches for data processing, data annotation, and data visualization in MS and NMR-based metabolomics. Most in this review described tools are dedicated to untargeted metabolomics workflows; however, some more specialist tools are described as well. All tools and resources described including their analytical and computational platform dependencies are summarized in an overview Table

    Using Web Archives to Enrich the Live Web Experience Through Storytelling

    Get PDF
    Much of our cultural discourse occurs primarily on the Web. Thus, Web preservation is a fundamental precondition for multiple disciplines. Archiving Web pages into themed collections is a method for ensuring these resources are available for posterity. Services such as Archive-It exists to allow institutions to develop, curate, and preserve collections of Web resources. Understanding the contents and boundaries of these archived collections is a challenge for most people, resulting in the paradox of the larger the collection, the harder it is to understand. Meanwhile, as the sheer volume of data grows on the Web, storytelling is becoming a popular technique in social media for selecting Web resources to support a particular narrative or story . In this dissertation, we address the problem of understanding the archived collections through proposing the Dark and Stormy Archive (DSA) framework, in which we integrate storytelling social media and Web archives. In the DSA framework, we identify, evaluate, and select candidate Web pages from archived collections that summarize the holdings of these collections, arrange them in chronological order, and then visualize these pages using tools that users already are familiar with, such as Storify. To inform our work of generating stories from archived collections, we start by building a baseline for the structural characteristics of popular (i.e., receiving the most views) human-generated stories through investigating stories from Storify. Furthermore, we checked the entire population of Archive-It collections for better understanding the characteristics of the collections we intend to summarize. We then filter off-topic pages from the collections the using different methods to detect when an archived page in a collection has gone off-topic. We created a gold standard dataset from three Archive-It collections to evaluate the proposed methods at different thresholds. From the gold standard dataset, we identified five behaviors for the TimeMaps (a list of archived copies of a page) based on the page’s aboutness. Based on a dynamic slicing algorithm, we divide the collection and cluster the pages in each slice. We then select the best representative page from each cluster based on different quality metrics (e.g., the replay quality, and the quality of the generated snippet from the page). At the end, we put the selected pages in chronological order and visualize them using Storify. For evaluating the DSA framework, we obtained a ground truth dataset of hand-crafted stories from Archive-It collections generated by expert archivists. We used Amazon’s Mechanical Turk to evaluate the automatically generated stories against the stories that were created by domain experts. The results show that the automatically generated stories by the DSA are indistinguishable from those created by human subject domain experts, while at the same time both kinds of stories (automatic and human) are easily distinguished from randomly generated storie

    Lifecycle information for e-literature: full report from the LIFE project

    Get PDF
    This Report is a record of the LIFE Project. The Project has been run for one year and its aim is to deliver crucial information about the cost and management of digital material. This information should then in turn be able to be applied to any institution that has an interest in preserving and providing access to electronic collections. The Project is a joint venture between The British Library and UCL Library Services. The Project is funded by JISC under programme area (i) as listed in paragraph 16 of the JISC 4/04 circular- Institutional Management Support and Collaboration and as such has set requirements and outcomes which must be met and the Project has done its best to do so. Where the Project has been unable to answer specific questions, strong recommendations have been made for future Project work to do so. The outcomes of this Project are expected to be a practical set of guidelines and a framework within which costs can be applied to digital collections in order to answer the following questions: • What is the long term cost of preserving digital material; • Who is going to do it; • What are the long term costs for a library in HE/FE to partner with another institution to carry out long term archiving; • What are the comparative long-term costs of a paper and digital copy of the same publication; • At what point will there be sufficient confidence in the stability and maturity of digital preservation to switch from paper for publications available in parallel formats; • What are the relative risks of digital versus paper archiving. The Project has attempted to answer these questions by using a developing lifecycle methodology and three diverse collections of digital content. The LIFE Project team chose UCL e-journals, BL Web Archiving and the BL VDEP digital collections to provide a strong challenge to the methodology as well as to help reach the key Project aim of attributing long term cost to digital collections. The results from the Case Studies and the Project findings are both surprising and illuminating

    Improving Collection Understanding for Web Archives with Storytelling: Shining Light Into Dark and Stormy Archives

    Get PDF
    Collections are the tools that people use to make sense of an ever-increasing number of archived web pages. As collections themselves grow, we need tools to make sense of them. Tools that work on the general web, like search engines, are not a good fit for these collections because search engines do not currently represent multiple document versions well. Web archive collections are vast, some containing hundreds of thousands of documents. Thousands of collections exist, many of which cover the same topic. Few collections include standardized metadata. Too many documents from too many collections with insufficient metadata makes collection understanding an expensive proposition. This dissertation establishes a five-process model to assist with web archive collection understanding. This model aims to produce a social media story – a visualization with which most web users are familiar. Each social media story contains surrogates which are summaries of individual documents. These surrogates, when presented together, summarize the topic of the story. After applying our storytelling model, they summarize the topic of a web archive collection. We develop and test a framework to select the best exemplars that represent a collection. We establish that algorithms produced from these primitives select exemplars that are otherwise undiscoverable using conventional search engine methods. We generate story metadata to improve the information scent of a story so users can understand it better. After an analysis showing that existing platforms perform poorly for web archives and a user study establishing the best surrogate type, we generate document metadata for the exemplars with machine learning. We then visualize the story and document metadata together and distribute it to satisfy the information needs of multiple personas who benefit from our model. Our tools serve as a reference implementation of our Dark and Stormy Archives storytelling model. Hypercane selects exemplars and generates story metadata. MementoEmbed generates document metadata. Raintale visualizes and distributes the story based on the story metadata and the document metadata of these exemplars. By providing understanding immediately, our stories save users the time and effort of reading thousands of documents and, most importantly, help them understand web archive collections

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio
    • …
    corecore