52,291 research outputs found

    Towards a framework for investigating tangible environments for learning

    Get PDF
    External representations have been shown to play a key role in mediating cognition. Tangible environments offer the opportunity for novel representational formats and combinations, potentially increasing representational power for supporting learning. However, we currently know little about the specific learning benefits of tangible environments, and have no established framework within which to analyse the ways that external representations work in tangible environments to support learning. Taking external representation as the central focus, this paper proposes a framework for investigating the effect of tangible technologies on interaction and cognition. Key artefact-action-representation relationships are identified, and classified to form a structure for investigating the differential cognitive effects of these features. An example scenario from our current research is presented to illustrate how the framework can be used as a method for investigating the effectiveness of differential designs for supporting science learning

    BitBox!:A case study interface for teaching real-time adaptive music composition for video games

    Get PDF
    Real-time adaptive music is now well-established as a popular medium, largely through its use in video game soundtracks. Commercial packages, such as fmod, make freely available the underlying technical methods for use in educational contexts, making adaptive music technologies accessible to students. Writing adaptive music, however, presents a significant learning challenge, not least because it requires a different mode of thought, and tutor and learner may have few mutual points of connection in discovering and understanding the musical drivers, relationships and structures in these works. This article discusses the creation of ‘BitBox!’, a gestural music interface designed to deconstruct and explain the component elements of adaptive composition through interactive play. The interface was displayed at the Dare Protoplay games exposition in Dundee in August 2014. The initial proof-of- concept study proved successful, suggesting possible refinements in design and a broader range of applications

    Effects of user experience on user resistance to change to the voice user interface of an in‑vehicle infotainment system: Implications for platform and standards competition

    Get PDF
    This study examines the effects of user experience on user resistance to change—particularly, on the relationship between user resistance to change and its antecedents (i.e. switching costs and perceived value) in the context of the voice user interface of an in-vehicle infotainment (IVI) system. This research offers several salient findings. First, it shows that user experience positively moderates the relationship between uncertainty costs (one type of switching cost) and user resistance. It also negatively moderates the association between perceived value and user resistance. Second, the research test results demonstrate that users with a high degree of prior experience with the voice user interface of other smart devices exhibit low user resistance to change to the voice user interface in an IVI system. Third, we show that three types of switching costs (transition costs, in particular) may directly influence users to resist a change to the voice user interface. Fourth, our test results empirically demonstrate that both switching costs and perceived value affect user resistance to change in the context of an IVI system, which differs from the traditional IS research setting (i.e. enterprise systems). These findings may guide not only platform leaders in designing user interfaces, user experiences, and marketing strategies, but also firms that want to defend themselves from platform envelopment while devising defensive strategies in platform and standards competition

    Authoring a Web‐enhanced interface for a new language‐learning environment

    Get PDF
    This paper presents conceptual considerations underpinning a design process set up to develop an applicable and usable interface as well as defining parameters for a new and versatile Computer Assisted Language Learning (CALL) environment. Based on a multidisciplinary expertise combining Human Computer Interaction (HCI), Web‐based Java programming, CALL authoring and language teaching expertise, it strives to generate new CALL‐enhanced curriculum developments in language learning. The originality of the approach rests on its design rationale established on the strength of previously identified student requirements and authoring needs identifying inherent design weaknesses and interactive limitations of existing hypermedia CALL applications (HĂ©mard, 1998). At the student level, the emphasis is placed on three important design decisions related to the design of the interface, student interaction and usability. Thus, particular attention is given to design considerations focusing on the need to (a) develop a readily recognizable, professionally robust and intuitive interface, (b) provide a student‐controlled navigational space based on a mixed learning environment approach, and (c) promote a flexible, network‐based, access mode reconciling classroom with open access exploitations. At the author level, design considerations are essentially orientated towards adaptability and flexibility with the integration of authoring facilities, requiring no specific authoring skills, to cater for and support the need for a flexible approach adaptable to specific language‐learning environments. This paper elaborates on these conceptual considerations within the design process with particular emphasis on the adopted principled methodology and resulting design decisions and solutions

    User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle

    Get PDF
    Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, little is known about driver expectations of partial driving automation and whether this affects the information they require inside the vehicle. Twenty-five participants were presented with five partially automated driving events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data was coded and analysed using grounded theory. From the results, two groupings of driver expectations were identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two groups the information preferences differed. LIP drivers did not want detailed information about the vehicle presented to them, but the definition of partial automation means that this kind of information is required for safe use. Hence, the results suggest careful thought as to how information is presented to them is required in order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed information about the system's status and driving and were found to be more willing to work with the partial automation and its current limitations. It was evident that the drivers' expectations of the partial automation capability differed, and this affected their information preferences. Hence this study suggests that HMI designers must account for these differing expectations and preferences to create a safe, usable system that works for everyone. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

    Mobile learning: benefits of augmented reality in geometry teaching

    Get PDF
    As a consequence of the technological advances and the widespread use of mobile devices to access information and communication in the last decades, mobile learning has become a spontaneous learning model, providing a more flexible and collaborative technology-based learning. Thus, mobile technologies can create new opportunities for enhancing the pupils’ learning experiences. This paper presents the development of a game to assist teaching and learning, aiming to help students acquire knowledge in the field of geometry. The game was intended to develop the following competences in primary school learners (8-10 years): a better visualization of geometric objects on a plane and in space; understanding of the properties of geometric solids; and familiarization with the vocabulary of geometry. Findings show that by using the game, students have improved around 35% the hits of correct responses to the classification and differentiation between edge, vertex and face in 3D solids.This research was supported by the Arts and Humanities Research Council Design Star CDT (AH/L503770/1), the Portuguese Foundation for Science and Technology (FCT) projects LARSyS (UID/EEA/50009/2013) and CIAC-Research Centre for Arts and Communication.info:eu-repo/semantics/publishedVersio

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    • 

    corecore