1,115 research outputs found

    Symmetry, Structure and the Constitution of Objects

    Get PDF
    In this paper I focus on the impact on structuralism of the quantum treatment of objects in terms of symmetry groups and, in particular, on the question as to how we might eliminate, or better, reconceptualise such objects in structural terms. With regard to the former, both Cassirer and Eddington not only explicitly and famously tied their structuralism to the development of group theory but also drew on the quantum treatment in order to further their structuralist aims and here I sketch the relevant history with an eye on what lessons might be drawn. With regard to the latter, Ladyman has explicitly cited Castellani's work on the group-theoretical constitution of quantum objects and I indicate both how such an approach needs to be understood if it is to mesh with Ladyman's 'ontic' form of structural realism and how it might accommodate permutation symmetry through a consideration of Huggett's recent account

    Symmetries and Paraparticles as a Motivation for Structuralism

    Get PDF
    This paper develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature--a theory's `not caring which point, or particle, is which'--supported a structuralist ontology. Pooley criticizes this analogy: in QM the (anti-)symmetrization of fermions and bosons implies that each individual state (solution) is fixed by each permutation, while in GR a diffeomorphism yields in general a distinct, albeit isomorphic, solution. We define various versions of structuralism, and go on to formulate Stachel's and Pooley's positions, admittedly in our own terms. We then reply to Pooley. Though he is right about fermions and bosons, QM equally allows more general types of symmetry, in which states (vectors, rays or density operators) are not fixed by all permutations (called `paraparticle states'). Thus Stachel's analogy is revived.Comment: 45 pages, Latex, 3 Figures; forthcoming in British Journal for the Philosophy of Scienc

    Symmetries and Paraparticles as a Motivation for Structuralism

    Get PDF
    This paper develops an analogy proposed by Stachel between general relativity (GR) and quantum mechanics (QM) as regards permutation invariance. Our main idea is to overcome Pooley's criticism of the analogy by appeal to paraparticles. In GR the equations are (the solution space is) invariant under diffeomorphisms permuting spacetime points. Similarly, in QM the equations are invariant under particle permutations. Stachel argued that this feature - a theory's "not caring which point, or particle, is which" - supported a structuralist ontology. Pooley criticizes this analogy: in QM the (anti-)symmetrization of fermions and bosons implies that each individual state (solution) is fixed by each permutation, while in GR a diffeomorphism yields in general a distinct, albeit isomorphic, solution. We define various versions of structuralism, and go on to formulate Stachel's and Pooley's positions, admittedly in our own terms. We then reply to Pooley. Though he is right about fermions and bosons, QM equally allows more general types of symmetry, in which states (vectors, rays or density operators) are not fixed by all permutations (called 'paraparticle states'). Thus Stachel's analogy is revived

    Characterization of unidimensional averaged similarities

    Get PDF
    A T-indistinguishability operator (or fuzzy similarity relation) E is called unidimensional when it may be obtained from one single fuzzy subset (or fuzzy criterion). In this paper, we study when a T-indistinguishability operator that has been obtained as an average of many unidimensional ones is unidimensional too. In this case, the single fuzzy subset used to generate E is explicitly obtained as the quasi-arithmetic mean of all the fuzzy criteria primarily involved in the construction of E.Peer ReviewedPostprint (author's final draft

    Symmetry, Structure and the Constitution of Objects

    Get PDF
    In this paper I focus on the impact on structuralism of the quantum treatment of objects in terms of symmetry groups and, in particular, on the question as to how we might eliminate, or better, reconceptualise such objects in structural terms. With regard to the former, both Cassirer and Eddington not only explicitly and famously tied their structuralism to the development of group theory but also drew on the quantum treatment in order to further their structuralist aims and here I sketch the relevant history with an eye on what lessons might be drawn. With regard to the latter, Ladyman has explicitly cited Castellani's work on the group-theoretical constitution of quantum objects and I indicate both how such an approach needs to be understood if it is to mesh with Ladyman's 'ontic' form of structural realism and how it might accommodate permutation symmetry through a consideration of Huggett's recent account

    Reduction of attributes in averaged similarities

    Get PDF
    Similarity Relations may be constructed from a set of fuzzy attributes. Each fuzzy attribute generates a simple similarity, and these simple similarities are combined into a complex similarity afterwards. The Representation Theorem establishes one such way of combining similarities, while averaging them is a different and more realistic approach in applied domains. In this paper, given an averaged similarity by a family of attributes, we propose a method to find families of new attributes having fewer elements that generate the same similarity. More generally, the paper studies the structure of this important class of fuzzy relations.Peer ReviewedPostprint (author's final draft
    corecore