469 research outputs found

    Investigate and classify various types of computer architecture

    Get PDF
    Issued as Final report, Project no. G-36-60

    Algorithms and architectures for the multirate additive synthesis of musical tones

    Get PDF
    In classical Additive Synthesis (AS), the output signal is the sum of a large number of independently controllable sinusoidal partials. The advantages of AS for music synthesis are well known as is the high computational cost. This thesis is concerned with the computational optimisation of AS by multirate DSP techniques. In note-based music synthesis, the expected bounds of the frequency trajectory of each partial in a finite lifecycle tone determine critical time-invariant partial-specific sample rates which are lower than the conventional rate (in excess of 40kHz) resulting in computational savings. Scheduling and interpolation (to suppress quantisation noise) for many sample rates is required, leading to the concept of Multirate Additive Synthesis (MAS) where these overheads are minimised by synthesis filterbanks which quantise the set of available sample rates. Alternative AS optimisations are also appraised. It is shown that a hierarchical interpretation of the QMF filterbank preserves AS generality and permits efficient context-specific adaptation of computation to required note dynamics. Practical QMF implementation and the modifications necessary for MAS are discussed. QMF transition widths can be logically excluded from the MAS paradigm, at a cost. Therefore a novel filterbank is evaluated where transition widths are physically excluded. Benchmarking of a hypothetical orchestral synthesis application provides a tentative quantitative analysis of the performance improvement of MAS over AS. The mapping of MAS into VLSI is opened by a review of sine computation techniques. Then the functional specification and high-level design of a conceptual MAS Coprocessor (MASC) is developed which functions with high autonomy in a loosely-coupled master- slave configuration with a Host CPU which executes filterbanks in software. Standard hardware optimisation techniques are used, such as pipelining, based upon the principle of an application-specific memory hierarchy which maximises MASC throughput

    Overview of database projects

    Get PDF
    The use of entity and object oriented data modeling techniques for managing Computer Aided Design (CAD) is explored

    Thermal Transport in Three-Dimensional Nanoarchitected Materials

    Get PDF
    Materials that simultaneously possess ultralow thermal conductivity, high stiffness, and damage tolerance are highly desirable for engineering applications. However, this combination of properties has never been demonstrated in a single material because thermal and mechanical properties are coupled in most fully dense and porous solids. A new class of lattice materials with nanoscale features, called nanolattices, can fill this void in the material property space by virtue of their architecture and nanoscale dimensions. Extensive work on nanolattice mechanical properties report their excellent stiffness-to-density ratio and recoverability from large compressive strains. In contrast, the framework for studying their thermal properties has not been established. Our work develops the computational and experimental tools necessary to study heat conduction in nanoarchitected materials and applies those tools to prove the viability of octet-truss nanolattices as multifunctional thermal insulators. We implement significant improvements to a phonon Monte Carlo method to solve the Boltzmann transport equation (BTE) in highly complex geometries like the octet-truss. No prior works solve the BTE in a domain as intricate as a nanolattice, so we create a geometry representation scheme that can model any arbitrary 3-D body. Our enhanced variance-reduced Monte Carlo code incorporates this scheme, allowing us to predict the thermal conductivity of nanolattices and analyze the phonon transport behavior in them. Results suggest that hollow-beam silicon nanolattices indeed reach ultralow thermal conductivities. Based on Monte Carlo and finite element simulations, we develop a predictive thermal conductivity model that accounts for both diffusive and radiative phonon transport in nanolattices. We also devise custom modifications to the 3ω method to experimentally measure the thermal conductivity of additively manufactured nanolattices. Since the serial fabrication process of nanolattices makes it costly to cover large areas, we design a specialized 3ω sample that minimizes the required structure size while maintaining good experimental sensitivity. We derive a new thermal model to account for conductive losses through the heater line in our novel sample geometry. 3ω measurements and compression tests of hollow-beam alumina nanolattices show that they combine ultralow thermal conductivity with excellent mechanical stiffness and resilience, which proves that nanolattices occupy a previously unreachable region in material property space. Our work provides motivation to further investigate and improve the thermal properties of architected materials.</p
    corecore