448 research outputs found

    Agent and cyber-physical system based self-organizing and self-adaptive intelligent shopfloor

    Get PDF
    The increasing demand of customized production results in huge challenges to the traditional manufacturing systems. In order to allocate resources timely according to the production requirements and to reduce disturbances, a framework for the future intelligent shopfloor is proposed in this paper. The framework consists of three primary models, namely the model of smart machine agent, the self-organizing model, and the self-adaptive model. A cyber-physical system for manufacturing shopfloor based on the multiagent technology is developed to realize the above-mentioned function models. Gray relational analysis and the hierarchy conflict resolution methods were applied to achieve the self-organizing and self-adaptive capabilities, thereby improving the reconfigurability and responsiveness of the shopfloor. A prototype system is developed, which has the adequate flexibility and robustness to configure resources and to deal with disturbances effectively. This research provides a feasible method for designing an autonomous factory with exception-handling capabilities

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Dynamic self-organization in holonic multi-agent manufacturing systems: The ADACOR evolution

    Get PDF
    Nowadays, systems are becoming increasingly complex, mainly due to an exponential increase in the number of entities and their interconnections. Examples of these complex systems can be found in manufacturing, smart-grids, traffic control, logistics, economics and biology, among others. Due to this complexity, particularly in manufacturing, a lack of responsiveness in coping with demand for higher quality products, the drastic reduction in product lifecycles and the increasing need for product customization are being observed. Traditional solutions, based on central monolithic control structures, are becoming obsolete as they are not suitable for reacting and adapting to these perturbations. The decentralization of the complexity problem through simple, intelligent and autonomous entities, such as those found in multi-agent systems, is seen as a suitable methodology for tackling this challenge in industrial scenarios. Additionally, the use of biologically inspired self-organization concepts has proved to be suitable for being embedded in these approaches enabling better performances to be achieved. According to these principals, several approaches have been proposed but none can be truly embedded and extract all the potential of self-organization mechanisms. This paper proposes an evolution to the ADACOR holonic control architecture inspired by biological and evolutionary theories. In particular, a two-dimension al self-organization mechanism was designed taking the behavioural and structural vectors into consideration, thus allowing truly evolutionary and reconfigurable systems to be achieved that can cope with emergent requirements. The approach proposed is validated with two simulation use cases.info:eu-repo/semantics/publishedVersio

    Adaptive scheduling based on self-organized holonic swarm of schedulers

    Get PDF
    Scheduling plays an important role in the companies’ competiveness, dealing with complex combinatorial problems subject to uncertainty and emergence. In particular, in the ramp-up phase of small lot-sizes of complex products, scheduling is more demanding, e.g. due to late requests and immature technology products and processes. This paper presents the principles of a distributed scheduling architecture based on holonic and swarm principles and implemented using multi-agent system technology. In particular, it is described the coordination among the network of the swarm of schedulers and analysed the impact of embedded self-organization mechanisms.The research leading to these results has received funding from the European Union Seventh Framework Programme FP7 ARUM project, under grant agreement n° 314056.info:eu-repo/semantics/publishedVersio

    Behavioural validation of the ADACOR2 Self-organized holonic multi-agent manufacturing system

    Get PDF
    Global economy is driving manufacturing companies into a paradigm revolution. Highly customizable products at lower prices and with higher quality are among the most imposed influence factors. To respond properly to these external and internal constraints, such as work absence and machine failures, companies must be in a constant adaptation phase. Several manufacturing control architectures have been proposed throughout the years displaying more or less success to adapt into different manufacturing situations. These architectures follow different design paradigms but recently the decentralization and distribution of the processing power into a set of cooperating and collaborative entities is becoming the trend. Despite of the effort spent, there is still the need to empower those architectures with evolutionary capabilities and self-organization mechanisms to enable the constant adaption to disturbances. This paper presents a behavioural mechanism embed in the ADACOR2 holons. A validation procedure for this mechanism is also presented and results extracted. This validation is achieved through the use of a benchmark and results are compared with classical hierarchical and heterarchical architectures as also with the ADACOR.info:eu-repo/semantics/publishedVersio

    Eco‐Holonic 4.0 Circular Business Model to  Conceptualize Sustainable Value Chain Towards  Digital Transition 

    Get PDF
    The purpose of this paper is to conceptualize a circular business model based on an Eco-Holonic Architecture, through the integration of circular economy and holonic principles. A conceptual model is developed to manage the complexity of integrating circular economy principles, digital transformation, and tools and frameworks for sustainability into business models. The proposed architecture is multilevel and multiscale in order to achieve the instantiation of the sustainable value chain in any territory. The architecture promotes the incorporation of circular economy and holonic principles into new circular business models. This integrated perspective of business model can support the design and upgrade of the manufacturing companies in their respective industrial sectors. The conceptual model proposed is based on activity theory that considers the interactions between technical and social systems and allows the mitigation of the metabolic rift that exists between natural and social metabolism. This study contributes to the existing literature on circular economy, circular business models and activity theory by considering holonic paradigm concerns, which have not been explored yet. This research also offers a unique holonic architecture of circular business model by considering different levels, relationships, dynamism and contextualization (territory) aspects

    Dynamic Switching Mechanism to Support Self-organization in ADACOR Holonic Control System

    Get PDF
    Evolvable control systems face the demands for modularity, decentralization, reconfigurabil-ity and responsiveness pointed out by the Industrie 4.0 initiative. In these systems, the self-organization model assumes a critical issue to ensure the correct evolution of the system structure into different operating configurations. ADACOR holonic manufacturing control architecture introduces an adaptive production control mechanism that balances between two states, combining the optimization provided by hierarchical structures with agility and responsiveness to condition changes offered by decentralized structures. This paper describes the switching mechanism that supports this dynamic balance and particularly the local and global driving forces for the self-organization model. The proposed model was experimentally tested in a small scale production system.info:eu-repo/semantics/publishedVersio

    Implementation and validation of a holonic manufacturing control system

    Get PDF
    Flexible manufacturing systems are complex, stochastic environments requiring the development of innovative, intelligent control architectures that support agility and re-configurability. ADACOR holonic control system addresses this challenge by introducing an adaptive production control approach supported by the presence of supervisor entities and the self-organization capabilities associated to each ADACOR holon. The validation of the concepts proposed by ADACOR control system requires their implementation and experimental testing, to analyze their correctness, applicability and merits. This paper describes the implementation of ADACOR concepts in a flexible manufacturing system, verifies their correctness and applicability, and evaluates the ADACOR control system performance, considering not only quantitative indicators directly related to production parameters, e.g. manufacturing lead time, but also qualitative indicators, such as the agility

    Agent-based distributed manufacturing control: a state-of-the-art survey

    Get PDF
    Manufacturing has faced significant changes during the last years, namely the move from a local economy towards a global and competitive economy, with markets demanding for highly customized products of high quality at lower costs, and with short life cycles. In this environment, manufacturing enterprises, to remain competitive, must respond closely to customer demands by improving their flexibility and agility, while maintaining their productivity and quality. Dynamic response to emergence is becoming a key issue in manufacturing field because traditional manufacturing control systems are built upon rigid control architectures, which cannot respond efficiently and effectively to dynamic change. In these circumstances, the current challenge is to develop manufacturing control systems that exhibit intelligence, robustness and adaptation to the environment changes and disturbances. The introduction of multi-agent systems and holonic manufacturing systems paradigms addresses these requirements, bringing the advantages of modularity, decentralization, autonomy, scalability and re- usability. This paper surveys the literature in manufacturing control systems using distributed artificial intelligence techniques, namely multi-agent systems and holonic manufacturing systems principles. The paper also discusses the reasons for the weak adoption of these approaches by industry and points out the challenges and research opportunities for the future

    Enhancing service-oriented holonic multi-agent systems with self-organization

    Get PDF
    Multi-agents systems and holonic manufacturing systems are suitable approaches to design a new and alternative class of production control systems, based on the decentralization of control functions over distributed autonomous and cooperative entities. However, in spite of their enormous potential they lack some aspects related to interoperability, migration, optimisation in decentralised structures and truly self-adaptation. This paper discusses the advantages of combining these paradigms with complementary paradigms, such as service-oriented architectures, and enhancing them with biologically inspired algorithms and techniques, such as emergent behaviour and self-organization, to reach a truly robust, agile and adaptive control system. An example of applying a stigmergy-based algorithm to dynamically route pallets in a production system is also provided
    corecore