327 research outputs found

    Structural Neural Encoders for AMR-to-text Generation

    Get PDF
    AMR-to-text generation is a problem recently introduced to the NLP community, in which the goal is to generate sentences from Abstract Meaning Representation (AMR) graphs. Sequence-to-sequence models can be used to this end by converting the AMR graphs to strings. Approaching the problem while working directly with graphs requires the use of graph-to-sequence models that encode the AMR graph into a vector representation. Such encoding has been shown to be beneficial in the past, and unlike sequential encoding, it allows us to explicitly capture reentrant structures in the AMR graphs. We investigate the extent to which reentrancies (nodes with multiple parents) have an impact on AMR-to-text generation by comparing graph encoders to tree encoders, where reentrancies are not preserved. We show that improvements in the treatment of reentrancies and long-range dependencies contribute to higher overall scores for graph encoders. Our best model achieves 24.40 BLEU on LDC2015E86, outperforming the state of the art by 1.1 points and 24.54 BLEU on LDC2017T10, outperforming the state of the art by 1.24 points.Comment: Proceedings of NAACL 201

    Graph-to-Sequence Learning using Gated Graph Neural Networks

    Full text link
    Many NLP applications can be framed as a graph-to-sequence learning problem. Previous work proposing neural architectures on this setting obtained promising results compared to grammar-based approaches but still rely on linearisation heuristics and/or standard recurrent networks to achieve the best performance. In this work, we propose a new model that encodes the full structural information contained in the graph. Our architecture couples the recently proposed Gated Graph Neural Networks with an input transformation that allows nodes and edges to have their own hidden representations, while tackling the parameter explosion problem present in previous work. Experimental results show that our model outperforms strong baselines in generation from AMR graphs and syntax-based neural machine translation.Comment: ACL 201

    Modeling Global and Local Node Contexts for Text Generation from Knowledge Graphs

    Get PDF
    Recent graph-to-text models generate text from graph-based data using either global or local aggregation to learn node representations. Global node encoding allows explicit communication between two distant nodes, thereby neglecting graph topology as all nodes are directly connected. In contrast, local node encoding considers the relations between neighbor nodes capturing the graph structure, but it can fail to capture long-range relations. In this work, we gather both encoding strategies, proposing novel neural models which encode an input graph combining both global and local node contexts, in order to learn better contextualized node embeddings. In our experiments, we demonstrate that our approaches lead to significant improvements on two graph-to-text datasets achieving BLEU scores of 18.01 on AGENDA dataset, and 63.69 on the WebNLG dataset for seen categories, outperforming state-of-the-art models by 3.7 and 3.1 points, respectively.Comment: Accepted for publication in Transactions of the Association for Computational Linguistics (TACL), 2020; Author's final version; pre-MIT Press publication versio

    Comparing Neural Meaning-to-Text Approaches for Dutch

    Get PDF
    The neural turn in computational linguistics has made it relatively easy to build systems for natural language generation, as long as suitable annotated corpora are available. But can such systems deliver the goods? Using Dutch data of the Parallel Meaning Bank, a corpus of (mostly short) texts annotated with language-neutral meaning representations, we investigate what challenges arise and what choices can be made when implementing sequence-to-sequence or graphto- sequence transformer models for generating Dutch texts from formal meaning representations. We compare the performance of linearized input graphs with graphs encoded in various formats and find that stacking encoders obtain the best results for the standard metrics used in natural language generation. A key challenge is dealing with unknown tokens that occur in the input meaning representation. We introduce a new method based on WordNet similarity to deal with out-of-vocab concepts

    Investigating Pretrained Language Models for Graph-to-Text Generation

    Full text link
    Graph-to-text generation aims to generate fluent texts from graph-based data. In this paper, we investigate two recently proposed pretrained language models (PLMs) and analyze the impact of different task-adaptive pretraining strategies for PLMs in graph-to-text generation. We present a study across three graph domains: meaning representations, Wikipedia knowledge graphs (KGs) and scientific KGs. We show that the PLMs BART and T5 achieve new state-of-the-art results and that task-adaptive pretraining strategies improve their performance even further. In particular, we report new state-of-the-art BLEU scores of 49.72 on LDC2017T10, 59.70 on WebNLG, and 25.66 on AGENDA datasets - a relative improvement of 31.8%, 4.5%, and 42.4%, respectively. In an extensive analysis, we identify possible reasons for the PLMs' success on graph-to-text tasks. We find evidence that their knowledge about true facts helps them perform well even when the input graph representation is reduced to a simple bag of node and edge labels.Comment: Our code and pretrained model checkpoints are available at https://github.com/UKPLab/plms-graph2tex
    corecore