12 research outputs found

    Byzantine Gathering in Polynomial Time

    Get PDF
    Gathering a group of mobile agents is a fundamental task in the field of distributed and mobile systems. This can be made drastically more difficult to achieve when some agents are subject to faults, especially the Byzantine ones that are known as being the worst faults to handle. In this paper we study, from a deterministic point of view, the task of Byzantine gathering in a network modeled as a graph. In other words, despite the presence of Byzantine agents, all the other (good) agents, starting from {possibly} different nodes and applying the same deterministic algorithm, have to meet at the same node in finite time and stop moving. An adversary chooses the initial nodes of the agents (the number of agents may be larger than the number of nodes) and assigns a different positive integer (called label) to each of them. Initially, each agent knows its label. The agents move in synchronous rounds and can communicate with each other only when located at the same node. Within the team, f of the agents are Byzantine. A Byzantine agent acts in an unpredictable and arbitrary way. For example, it can choose an arbitrary port when it moves, can convey arbitrary information to other agents and can change its label in every round, in particular by forging the label of another agent or by creating a completely new one. Besides its label, which corresponds to a local knowledge, an agent is assigned some global knowledge denoted by GK that is common to all agents. In literature, the Byzantine gathering problem has been analyzed in arbitrary n-node graphs by considering the scenario when GK=(n,f) and the scenario when GK=f. In the first (resp. second) scenario, it has been shown that the minimum number of good agents guaranteeing deterministic gathering of all of them is f+1 (resp. f+2). However, for both these scenarios, all the existing deterministic algorithms, whether or not they are optimal in terms of required number of good agents, have the major disadvantage of having a time complexity that is exponential in n and L, where L is the value of the largest label belonging to a good agent. In this paper, we seek to design a deterministic solution for Byzantine gathering that makes a concession on the proportion of Byzantine agents within the team, but that offers a significantly lower complexity. We also seek to use a global knowledge whose the length of the binary representation (that we also call size) is small. In this respect, assuming that the agents are in a strong team i.e., a team in which the number of good agents is at least some prescribed value that is quadratic in f, we give positive and negative results. On the positive side, we show an algorithm that solves Byzantine gathering with all strong teams in all graphs of size at most n, for any integers n and f, in a time polynomial in n and the length |l_{min}| of the binary representation of the smallest label of a good agent. The algorithm works using a global knowledge of size O(log log log n), which is of optimal order of magnitude in our context to reach a time complexity that is polynomial in n and |l_{min}|. Indeed, on the negative side, we show that there is no deterministic algorithm solving Byzantine gathering with all strong teams, in all graphs of size at most n, in a time polynomial in n and |l_{min}| and using a global knowledge of size o(log log log n)

    Asynchronous approach in the plane: A deterministic polynomial algorithm

    Full text link
    In this paper we study the task of approach of two mobile agents having the same limited range of vision and moving asynchronously in the plane. This task consists in getting them in finite time within each other's range of vision. The agents execute the same deterministic algorithm and are assumed to have a compass showing the cardinal directions as well as a unit measure. On the other hand, they do not share any global coordinates system (like GPS), cannot communicate and have distinct labels. Each agent knows its label but does not know the label of the other agent or the initial position of the other agent relative to its own. The route of an agent is a sequence of segments that are subsequently traversed in order to achieve approach. For each agent, the computation of its route depends only on its algorithm and its label. An adversary chooses the initial positions of both agents in the plane and controls the way each of them moves along every segment of the routes, in particular by arbitrarily varying the speeds of the agents. A deterministic approach algorithm is a deterministic algorithm that always allows two agents with any distinct labels to solve the task of approach regardless of the choices and the behavior of the adversary. The cost of a complete execution of an approach algorithm is the length of both parts of route travelled by the agents until approach is completed. Let Δ\Delta and ll be the initial distance separating the agents and the length of the shortest label, respectively. Assuming that Δ\Delta and ll are unknown to both agents, does there exist a deterministic approach algorithm always working at a cost that is polynomial in Δ\Delta and ll? In this paper, we provide a positive answer to the above question by designing such an algorithm

    Lower bounds for local approximation

    Get PDF
    In the study of deterministic distributed algorithms it is commonly assumed that each node has a unique O(log n)-bit identifier. We prove that for a general class of graph problems, local algorithms (constant-time distributed algorithms) do not need such identifiers: a port numbering and orientation is sufficient. Our result holds for so-called simple PO-checkable graph optimisation problems; this includes many classical packing and covering problems such as vertex covers, edge covers, matchings, independent sets, dominating sets, and edge dominating sets. We focus on the case of bounded-degree graphs and show that if a local algorithm finds a constant-factor approximation of a simple PO-checkable graph problem with the help of unique identifiers, then the same approximation ratio can be achieved on anonymous networks. As a corollary of our result, we derive a tight lower bound on the local approximability of the minimum edge dominating set problem. By prior work, there is a deterministic local algorithm that achieves the approximation factor of 4 − 1/⌊Δ/2⌋ in graphs of maximum degree Δ. This approximation ratio is known to be optimal in the port-numbering model—our main theorem implies that it is optimal also in the standard model in which each node has a unique identifier. Our main technical tool is an algebraic construction of homogeneously ordered graphs: We say that a graph is (α,r)-homogeneous if its nodes are linearly ordered so that an α fraction of nodes have pairwise isomorphic radius-r neighbourhoods. We show that there exists a finite (α,r)-homogeneous 2k-regular graph of girth at least g for any α < 1 and any r, k, and g.Peer reviewe

    Byzantine Gathering in Networks

    Full text link
    This paper investigates an open problem introduced in [14]. Two or more mobile agents start from different nodes of a network and have to accomplish the task of gathering which consists in getting all together at the same node at the same time. An adversary chooses the initial nodes of the agents and assigns a different positive integer (called label) to each of them. Initially, each agent knows its label but does not know the labels of the other agents or their positions relative to its own. Agents move in synchronous rounds and can communicate with each other only when located at the same node. Up to f of the agents are Byzantine. A Byzantine agent can choose an arbitrary port when it moves, can convey arbitrary information to other agents and can change its label in every round, in particular by forging the label of another agent or by creating a completely new one. What is the minimum number M of good agents that guarantees deterministic gathering of all of them, with termination? We provide exact answers to this open problem by considering the case when the agents initially know the size of the network and the case when they do not. In the former case, we prove M=f+1 while in the latter, we prove M=f+2. More precisely, for networks of known size, we design a deterministic algorithm gathering all good agents in any network provided that the number of good agents is at least f+1. For networks of unknown size, we also design a deterministic algorithm ensuring the gathering of all good agents in any network but provided that the number of good agents is at least f+2. Both of our algorithms are optimal in terms of required number of good agents, as each of them perfectly matches the respective lower bound on M shown in [14], which is of f+1 when the size of the network is known and of f+2 when it is unknown

    Byzantine Gathering in Polynomial Time

    Full text link
    We study the task of Byzantine gathering in a network modeled as a graph. Despite the presence of Byzantine agents, all the other (good) agents, starting from possibly different nodes and applying the same deterministic algorithm, have to meet at the same node in finite time and stop moving. An adversary chooses the initial nodes of the agents and assigns a different label to each of them. The agents move in synchronous rounds and communicate with each other only when located at the same node. Within the team, f of the agents are Byzantine. A Byzantine agent acts in an unpredictable way: in particular it may forge the label of another agent or create a completely new one. Besides its label, which corresponds to a local knowledge, an agent is assigned some global knowledge GK that is common to all agents. In literature, the Byzantine gathering problem has been analyzed in arbitrary n-node graphs by considering the scenario when GK=(n,f) and the scenario when GK=f. In the first (resp. second) scenario, it has been shown that the minimum number of good agents guaranteeing deterministic gathering of all of them is f+1 (resp. f+2). For both these scenarios, all the existing deterministic algorithms, whether or not they are optimal in terms of required number of good agents, have a time complexity that is exponential in n and L, where L is the largest label belonging to a good agent. In this paper, we seek to design a deterministic solution for Byzantine gathering that makes a concession on the proportion of Byzantine agents within the team, but that offers a significantly lower complexity. We also seek to use a global knowledge whose the length of the binary representation is small. Assuming that the agents are in a strong team i.e., a team in which the number of good agents is at least some prescribed value that is quadratic in f, we give positive and negative results

    Survey of local algorithms

    Get PDF
    A local algorithm is a distributed algorithm that runs in constant time, independently of the size of the network. Being highly scalable and fault-tolerant, such algorithms are ideal in the operation of large-scale distributed systems. Furthermore, even though the model of local algorithms is very limited, in recent years we have seen many positive results for non-trivial problems. This work surveys the state-of-the-art in the field, covering impossibility results, deterministic local algorithms, randomised local algorithms, and local algorithms for geometric graphs.Peer reviewe

    Optimisation problems in wireless sensor networks : Local algorithms and local graphs

    Get PDF
    This thesis studies optimisation problems related to modern large-scale distributed systems, such as wireless sensor networks and wireless ad-hoc networks. The concrete tasks that we use as motivating examples are the following: (i) maximising the lifetime of a battery-powered wireless sensor network, (ii) maximising the capacity of a wireless communication network, and (iii) minimising the number of sensors in a surveillance application. A sensor node consumes energy both when it is transmitting or forwarding data, and when it is performing measurements. Hence task (i), lifetime maximisation, can be approached from two different perspectives. First, we can seek for optimal data flows that make the most out of the energy resources available in the network; such optimisation problems are examples of so-called max-min linear programs. Second, we can conserve energy by putting redundant sensors into sleep mode; we arrive at the sleep scheduling problem, in which the objective is to find an optimal schedule that determines when each sensor node is asleep and when it is awake. In a wireless network simultaneous radio transmissions may interfere with each other. Task (ii), capacity maximisation, therefore gives rise to another scheduling problem, the activity scheduling problem, in which the objective is to find a minimum-length conflict-free schedule that satisfies the data transmission requirements of all wireless communication links. Task (iii), minimising the number of sensors, is related to the classical graph problem of finding a minimum dominating set. However, if we are not only interested in detecting an intruder but also locating the intruder, it is not sufficient to solve the dominating set problem; formulations such as minimum-size identifying codes and locating–dominating codes are more appropriate. This thesis presents approximation algorithms for each of these optimisation problems, i.e., for max-min linear programs, sleep scheduling, activity scheduling, identifying codes, and locating–dominating codes. Two complementary approaches are taken. The main focus is on local algorithms, which are constant-time distributed algorithms. The contributions include local approximation algorithms for max-min linear programs, sleep scheduling, and activity scheduling. In the case of max-min linear programs, tight upper and lower bounds are proved for the best possible approximation ratio that can be achieved by any local algorithm. The second approach is the study of centralised polynomial-time algorithms in local graphs – these are geometric graphs whose structure exhibits spatial locality. Among other contributions, it is shown that while identifying codes and locating–dominating codes are hard to approximate in general graphs, they admit a polynomial-time approximation scheme in local graphs

    Crossing and Controlling Borders

    Get PDF
    This volume highlights the impact of border controls on migrants’ journeys in two major areas of immigration: the European Union and the United States of America. In order to show the linkages between border control policies and migratory practices, the book combines empirical insights from ethnography with approaches from political science. Describing migrants’ realities reveals that the impact of border control policies goes beyond the actual border area affecting many lives and states

    Crossing and Controlling Borders

    Get PDF
    This volume highlights the impact of border controls on migrants’ journeys in two major areas of immigration: the European Union and the United States of America. In order to show the linkages between border control policies and migratory practices, the book combines empirical insights from ethnography with approaches from political science. Describing migrants’ realities reveals that the impact of border control policies goes beyond the actual border area affecting many lives and states
    corecore