1,444 research outputs found

    Mixed-Signal Testability Analysis for Data-Converter IPs

    Get PDF
    In this paper, a new procedure to derive testability measures is presented. Digital testability can be calculated by means of probability, while in analog it is possible to calculate testability using impedance values. Although attempts have been made to reach compatibility, matching was somewhat arbitrary and therefore not necessarily compatible. The concept of the new approach is that digital and analog can be integrated in a more consistent way. More realistic testability figures are obtained, which makes testability of true mixed-signal systems and circuits feasible. To verify the results, our method is compared with a sensitivity analysis, for a simple 3-bit ADC

    Preventing and masking Trojan Circuits triggering out of working area

    Get PDF
    Inserting malicious sub-circuits that may cause

    Optimal Piezoelectric Actuators and Sensors Configuration for Vibration Suppression of Aircraft Framework Using Particle Swarm Algorithm

    Get PDF
    Numbers and locations of sensors and actuators play an important role in cost and control performance for active vibration control system of piezoelectric smart structure. This may lead to a diverse control system if sensors and actuators were not configured properly. An optimal location method of piezoelectric actuators and sensors is proposed in this paper based on particle swarm algorithm (PSA). Due to the complexity of the frame structure, it can be taken as a combination of many piezoelectric intelligent beams and L-type structures. Firstly, an optimal criterion of sensors and actuators is proposed with an optimal objective function. Secondly, each order natural frequency and modal strain are calculated and substituted into the optimal objective function. Preliminary optimal allocation is done using the particle swarm algorithm, based on the similar optimization method and the combination of the vibration stress and strain distribution at the lower modal frequency. Finally, the optimal location is given. An experimental platform was established and the experimental results indirectly verified the feasibility and effectiveness of the proposed method

    Observability of dynamical networks from graphic and symbolic approaches

    Full text link
    A dynamical network, a graph whose nodes are dynamical systems, is usually characterized by a large dimensional space which is not always accesible due to the impossibility of measuring all the variables spanning the state space. Therefore, it is of the utmost importance to determine a reduced set of variables providing all the required information for non-ambiguously distinguish its different states. Inherited from control theory, one possible approach is based on the use of the observability matrix defined as the Jacobian matrix of the change of coordinates between the original state space and the space reconstructed from the measured variables. The observability of a given system can be accurately assessed by symbolically computing the complexity of the determinant of the observability matrix and quantified by symbolic observability coefficients. In this work, we extend the symbolic observability, previously developed for dynamical systems, to networks made of coupled dd-dimensional node dynamics (d>1d>1). From the observability of the node dynamics, the coupling function between the nodes, and the adjacency matrix, it is indeed possible to construct the observability of a large network with an arbitrary topology.Comment: 12 pages, 4 figures made from 12 eps file

    Modelling & analysis of hybrid dynamic systems using a bond graph approach

    Get PDF
    Hybrid models are those containing continuous and discontinuous behaviour. In constructing dynamic systems models, it is frequently desirable to abstract rapidly changing, highly nonlinear behaviour to a discontinuity. Bond graphs lend themselves to systems modelling by being multi-disciplinary and reflecting the physics of the system. One advantage is that they can produce a mathematical model in a form that simulates quickly and efficiently. Hybrid bond graphs are a logical development which could further improve speed and efficiency. A range of hybrid bond graph forms have been proposed which are suitable for either simulation or further analysis, but not both. None have reached common usage. A Hybrid bond graph method is proposed here which is suitable for simulation as well as providing engineering insight through analysis. This new method features a distinction between structural and parametric switching. The controlled junction is used for the former, and gives rise to dynamic causality. A controlled element is developed for the latter. Dynamic causality is unconstrained so as to aid insight, and a new notation is proposed. The junction structure matrix for the hybrid bond graph features Boolean terms to reflect the controlled junctions in the graph structure. This hybrid JSM is used to generate a mixed-Boolean state equation. When storage elements are in dynamic causality, the resulting system equation is implicit. The focus of this thesis is the exploitation of the model. The implicit form enables application of matrix-rank criteria from control theory, and control properties can be seen in the structure and causal assignment. An impulsive mode may occur when storage elements are in dynamic causality, but otherwise there are no energy losses associated with commutation because this method dictates the way discontinuities are abstracted. The main contribution is therefore a Hybrid Bond Graph which reflects the physics of commutating systems and offers engineering insight through the choice of controlled elements and dynamic causality. It generates a unique, implicit, mixed-Boolean system equation, describing all modes of operation. This form is suitable for both simulation and analysis
    corecore