62 research outputs found

    Efficient algorithms for generalized Stable Marriage and Roommates problems

    Get PDF
    We consider a generalization of the Stable Roommates problem (SR), in which preference lists may be partially ordered and forbidden pairs may be present, denoted by SRPF. This includes, as a special case, a corresponding generalization of the classical Stable Marriage problem (SM), denoted by SMPF. By extending previous work of Feder, we give a two-step reduction from SRPF to 2-SAT. This has many consequences, including fast algorithms for a range of problems associated with finding "optimal" stable matchings and listing all solutions, given variants of SR and SM. For example, given an SMPF instance I, we show that there exists an O(m) "succinct" certificate for the unsolvability of I, an O(m) algorithm for finding all the super-stable pairs in I, an O(m+kn) algorithm for listing all the super-stable matchings in I, an O(m<sup>1.5</sup>) algorithm for finding an egalitarian super-stable matching in I, and an O(m) algorithm for finding a minimum regret super-stable matching in I, where n is the number of men, m is the total length of the preference lists, and k is the number of super-stable matchings in I. Analogous results apply in the case of SRPF

    The stable marriage problem with master preference lists

    Get PDF
    We study variants of the classical stable marriage problem in which the preferences of the men or the women, or both, are derived from a master preference list. This models real-world matching problems in which participants are ranked according to some objective criteria. The master list(s) may be strictly ordered, or may include ties, and the lists of individuals may involve ties and may include all, or just some, of the members of the opposite sex. In fact, ties are almost inevitable in the master list if the ranking is done on the basis of a scoring scheme with a relatively small range of distinct values. We show that many of the interesting variants of stable marriage that are NP-hard remain so under very severe restrictions involving the presence of master lists, but a number of special cases can be solved in polynomial time. Under this master list model, versions of the stable marriage problem that are already solvable in polynomial time typically yield to faster and/or simpler algorithms, giving rise to simple new structural characterisations of the solutions in these cases

    The hospitals/residents problem

    Get PDF
    No abstract available

    A structural approach to matching problems with preferences

    Get PDF
    This thesis is a study of a number of matching problems that seek to match together pairs or groups of agents subject to the preferences of some or all of the agents. We present a number of new algorithmic results for five specific problem domains. Each of these results is derived with the aid of some structural properties implicitly embedded in the problem. We begin by describing an approximation algorithm for the problem of finding a maximum stable matching for an instance of the stable marriage problem with ties and incomplete lists (MAX-SMTI). Our polynomial time approximation algorithm provides a performance guarantee of 3/2 for the general version of MAX-SMTI, improving upon the previous best approximation algorithm, which gave a performance guarantee of 5/3. Next, we study the sex-equal stable marriage problem (SESM). We show that SESM is W[1]-hard, even if the men's and women's preference lists are both of length at most three. This improves upon the previously known hardness results. We contrast this with an exact, low-order exponential time algorithm. This is the first non-trivial exponential time algorithm known for this problem, or indeed for any hard stable matching problem. Turning our attention to the hospitals / residents problem with couples (HRC), we show that HRC is NP-complete, even if very severe restrictions are placed on the input. By contrast, we give a linear-time algorithm to find a stable matching with couples (or report that none exists) when stability is defined in terms of the classical Gale-Shapley concept. This result represents the most general polynomial time solvable restriction of HRC that we are aware of. We then explore the three dimensional stable matching problem (3DSM), in which we seek to find stable matchings across three sets of agents, rather than two (as in the classical case). We show that under two natural definitions of stability, finding a stable matching for a 3DSM instance is NP-complete. These hardness results resolve some open questions in the literature. Finally, we study the popular matching problem (POP-M) in the context of matching a set of applicants to a set of posts. We provide a characterization of the set of popular matchings for an arbitrary POP-M instance in terms of a new structure called the switching graph exploited to yield efficient algorithms for a range of associated problems, extending and improving upon the previously best-known results for this problem
    corecore