85 research outputs found

    On the Relations Between Diffie-Hellman and ID-Based Key Agreement from Pairings

    Get PDF
    This paper studies the relationships between the traditional Diffie-Hellman key agreement protocol and the identity-based (ID-based) key agreement protocol from pairings. For the Sakai-Ohgishi-Kasahara (SOK) ID-based key construction, we show that identical to the Diffie-Hellman protocol, the SOK key agreement protocol also has three variants, namely \emph{ephemeral}, \emph{semi-static} and \emph{static} versions. Upon this, we build solid relations between authenticated Diffie-Hellman (Auth-DH) protocols and ID-based authenticated key agreement (IB-AK) protocols, whereby we present two \emph{substitution rules} for this two types of protocols. The rules enable a conversion between the two types of protocols. In particular, we obtain the \emph{real} ID-based version of the well-known MQV (and HMQV) protocol. Similarly, for the Sakai-Kasahara (SK) key construction, we show that the key transport protocol underlining the SK ID-based encryption scheme (which we call the "SK protocol") has its non-ID counterpart, namely the Hughes protocol. Based on this observation, we establish relations between corresponding ID-based and non-ID-based protocols. In particular, we propose a highly enhanced version of the McCullagh-Barreto protocol

    An efficient certificateless authenticated key agreement protocol without bilinear pairings

    Full text link
    Certificateless public key cryptography simplifies the complex certificate management in the traditional public key cryptography and resolves the key escrow problem in identity-based cryptography. Many certificateless authenticated key agreement protocols using bilinear pairings have been proposed. But the relative computation cost of the pairing is approximately twenty times higher than that of the scalar multiplication over elliptic curve group. Recently, several certificateless authenticated key agreement protocols without pairings were proposed to improve the performance. In this paper, we propose a new certificateless authenticated key agreement protocol without pairing. The user in our just needs to compute five scale multiplication to finish the key agreement. We also show the proposed protocol is secure in the random oracle model

    Deniable Key Establishment Resistance against eKCI Attacks

    Get PDF
    In extended Key Compromise Impersonation (eKCI) attack against authenticated key establishment (AKE) protocols the adversary impersonates one party, having the long term key and the ephemeral key of the other peer party. Such an attack can be mounted against variety of AKE protocols, including 3-pass HMQV. An intuitive countermeasure, based on BLS (Boneh–Lynn–Shacham) signatures, for strengthening HMQV was proposed in literature. The original HMQV protocol fulfills the deniability property: a party can deny its participation in the protocol execution, as the peer party can create a fake protocol transcript indistinguishable from the real one. Unfortunately, the modified BLS based version of HMQV is not deniable. In this paper we propose a method for converting HMQV (and similar AKE protocols) into a protocol resistant to eKCI attacks but without losing the original deniability property. For that purpose, instead of the undeniable BLS, we use a modification of Schnorr authentication protocol, which is deniable and immune to ephemeral key leakages

    Sufficient condition for ephemeral key-leakage resilient tripartite key exchange

    Get PDF
    17th Australasian Conference on Information Security and Privacy, ACISP 2012; Wollongong, NSW; Australia; 9 July 2012 through 11 July 2012Tripartite (Diffie-Hellman) Key Exchange (3KE), introduced by Joux (ANTS-IV 2000), represents today the only known class of group key exchange protocols, in which computation of unauthenticated session keys requires one round and proceeds with minimal computation and communication overhead. The first one-round authenticated 3KE version that preserved the unique efficiency properties of the original protocol and strengthened its security towards resilience against leakage of ephemeral (session-dependent) secrets was proposed recently by Manulis, Suzuki, and Ustaoglu (ICISC 2009). In this work we explore sufficient conditions for building such protocols. We define a set of admissible polynomials and show how their construction generically implies 3KE protocols with the desired security and efficiency properties. Our result generalizes the previous 3KE protocol and gives rise to many new authenticated constructions, all of which enjoy forward secrecy and resilience to ephemeral key-leakage under the gap Bilinear Diffie-Hellman assumption in the random oracle model. © 2012 Springer-Verlag

    Pairing-based cryptosystems and key agreement protocols.

    Get PDF
    For a long time, pairings on elliptic curves have been considered to be destructive in elliptic curve cryptography. Only recently after some pioneering works, particularly the well-known Boneh-Franklin identity-based encryption (IBE), pairings have quickly become an important tool to construct novel cryptographic schemes. In this thesis, several new cryptographic schemes with pairings are proposed, which are both efficient and secure with respect to a properly defined security model, and some relevant previous schemes are revisited. IBE provides a public key encryption mechanism where a public key can be an arbitrary string such as an entity identifier and unwieldy certificates are unnecessary. Based on the Sakai-Kasahara key construction, an IBE scheme which is secure in the Boneh-Franklin IBE model is constructed, and two identity-based key encapsulation mechanisms are proposed. These schemes achieve the best efficiency among the existing schemes to date. Recently Al-Riyami and Paterson introduced the certificateless public key encryption (CL-PKE) paradigm, which eliminates the need of certificates and at the same time retains the desirable properties of IBE without the key escrow problem. The security formulation of CL-PKE is revisited and a strong security model for this type of mechanism is defined. Following a heuristic approach, three efficient CL-PKE schemes which are secure in the defined strong security model are proposed. Identity-based two-party key agreement protocols from pairings are also investigated. The Bellare-Rogaway key agreement model is enhanced and within the model several previously unproven protocols in the literature are formally analysed. In considering that the user identity may be sensitive information in many environments, an identity-based key agreement protocol with unilateral identity privacy is proposed

    An Efficient Authentication Protocol for Smart Grid Communication Based on On-Chip-Error-Correcting Physical Unclonable Function

    Full text link
    Security has become a main concern for the smart grid to move from research and development to industry. The concept of security has usually referred to resistance to threats by an active or passive attacker. However, since smart meters (SMs) are often placed in unprotected areas, physical security has become one of the important security goals in the smart grid. Physical unclonable functions (PUFs) have been largely utilized for ensuring physical security in recent years, though their reliability has remained a major problem to be practically used in cryptographic applications. Although fuzzy extractors have been considered as a solution to solve the reliability problem of PUFs, they put a considerable computational cost to the resource-constrained SMs. To that end, we first propose an on-chip-error-correcting (OCEC) PUF that efficiently generates stable digits for the authentication process. Afterward, we introduce a lightweight authentication protocol between the SMs and neighborhood gateway (NG) based on the proposed PUF. The provable security analysis shows that not only the proposed protocol can stand secure in the Canetti-Krawczyk (CK) adversary model but also provides additional security features. Also, the performance evaluation demonstrates the significant improvement of the proposed scheme in comparison with the state-of-the-art
    corecore