1,902 research outputs found

    Strongly polynomial algorithm for a class of minimum-cost flow problems with separable convex objectives

    Get PDF
    A well-studied nonlinear extension of the minimum-cost flow problem is to minimize the objective ijECij(fij)\sum_{ij\in E} C_{ij}(f_{ij}) over feasible flows ff, where on every arc ijij of the network, CijC_{ij} is a convex function. We give a strongly polynomial algorithm for the case when all CijC_{ij}'s are convex quadratic functions, settling an open problem raised e.g. by Hochbaum [1994]. We also give strongly polynomial algorithms for computing market equilibria in Fisher markets with linear utilities and with spending constraint utilities, that can be formulated in this framework (see Shmyrev [2009], Devanur et al. [2011]). For the latter class this resolves an open question raised by Vazirani [2010]. The running time is O(m4logm)O(m^4\log m) for quadratic costs, O(n4+n2(m+nlogn)logn)O(n^4+n^2(m+n\log n)\log n) for Fisher's markets with linear utilities and O(mn3+m2(m+nlogn)logm)O(mn^3 +m^2(m+n\log n)\log m) for spending constraint utilities. All these algorithms are presented in a common framework that addresses the general problem setting. Whereas it is impossible to give a strongly polynomial algorithm for the general problem even in an approximate sense (see Hochbaum [1994]), we show that assuming the existence of certain black-box oracles, one can give an algorithm using a strongly polynomial number of arithmetic operations and oracle calls only. The particular algorithms can be derived by implementing these oracles in the respective settings

    Separable Convex Optimization with Nested Lower and Upper Constraints

    Full text link
    We study a convex resource allocation problem in which lower and upper bounds are imposed on partial sums of allocations. This model is linked to a large range of applications, including production planning, speed optimization, stratified sampling, support vector machines, portfolio management, and telecommunications. We propose an efficient gradient-free divide-and-conquer algorithm, which uses monotonicity arguments to generate valid bounds from the recursive calls, and eliminate linking constraints based on the information from sub-problems. This algorithm does not need strict convexity or differentiability. It produces an ϵ\epsilon-approximate solution for the continuous problem in O(nlogmlognBϵ)\mathcal{O}(n \log m \log \frac{n B}{\epsilon}) time and an integer solution in O(nlogmlogB)\mathcal{O}(n \log m \log B) time, where nn is the number of decision variables, mm is the number of constraints, and BB is the resource bound. A complexity of O(nlogm)\mathcal{O}(n \log m) is also achieved for the linear and quadratic cases. These are the best complexities known to date for this important problem class. Our experimental analyses confirm the good performance of the method, which produces optimal solutions for problems with up to 1,000,000 variables in a few seconds. Promising applications to the support vector ordinal regression problem are also investigated

    Concave Generalized Flows with Applications to Market Equilibria

    Get PDF
    We consider a nonlinear extension of the generalized network flow model, with the flow leaving an arc being an increasing concave function of the flow entering it, as proposed by Truemper and Shigeno. We give a polynomial time combinatorial algorithm for solving corresponding flow maximization problems, finding an epsilon-approximate solution in O(m(m+log n)log(MUm/epsilon)) arithmetic operations and value oracle queries, where M and U are upper bounds on simple parameters. This also gives a new algorithm for linear generalized flows, an efficient, purely scaling variant of the Fat-Path algorithm by Goldberg, Plotkin and Tardos, not using any cycle cancellations. We show that this general convex programming model serves as a common framework for several market equilibrium problems, including the linear Fisher market model and its various extensions. Our result immediately extends these market models to more general settings. We also obtain a combinatorial algorithm for nonsymmetric Arrow-Debreu Nash bargaining, settling an open question by Vazirani.Comment: Major revision. Instead of highest gain augmenting paths, we employ the Fat-Path framework. Many parts simplified, running time for the linear case improve

    A Decomposition Algorithm for Nested Resource Allocation Problems

    Full text link
    We propose an exact polynomial algorithm for a resource allocation problem with convex costs and constraints on partial sums of resource consumptions, in the presence of either continuous or integer variables. No assumption of strict convexity or differentiability is needed. The method solves a hierarchy of resource allocation subproblems, whose solutions are used to convert constraints on sums of resources into bounds for separate variables at higher levels. The resulting time complexity for the integer problem is O(nlogmlog(B/n))O(n \log m \log (B/n)), and the complexity of obtaining an ϵ\epsilon-approximate solution for the continuous case is O(nlogmlog(B/ϵ))O(n \log m \log (B/\epsilon)), nn being the number of variables, mm the number of ascending constraints (such that m<nm < n), ϵ\epsilon a desired precision, and BB the total resource. This algorithm attains the best-known complexity when m=nm = n, and improves it when logm=o(logn)\log m = o(\log n). Extensive experimental analyses are conducted with four recent algorithms on various continuous problems issued from theory and practice. The proposed method achieves a higher performance than previous algorithms, addressing all problems with up to one million variables in less than one minute on a modern computer.Comment: Working Paper -- MIT, 23 page

    Combinatorial Optimization

    Get PDF
    Combinatorial Optimization is a very active field that benefits from bringing together ideas from different areas, e.g., graph theory and combinatorics, matroids and submodularity, connectivity and network flows, approximation algorithms and mathematical programming, discrete and computational geometry, discrete and continuous problems, algebraic and geometric methods, and applications. We continued the long tradition of triannual Oberwolfach workshops, bringing together the best researchers from the above areas, discovering new connections, and establishing new and deepening existing international collaborations

    Fast approximation schemes for multi-criteria combinatorial optimization

    Get PDF
    Cover title.Includes bibliographical references (p. 38-44).by Hershel M. Safer, James B. Orlin

    Quadratic nonseparable resource allocation problems with generalized bound constraints

    Full text link
    We study a quadratic nonseparable resource allocation problem that arises in the area of decentralized energy management (DEM), where unbalance in electricity networks has to be minimized. In this problem, the given resource is allocated over a set of activities that is divided into subsets, and a cost is assigned to the overall allocated amount of resources to activities within the same subset. We derive two efficient algorithms with O(nlogn)O(n\log n) worst-case time complexity to solve this problem. For the special case where all subsets have the same size, one of these algorithms even runs in linear time given the subset size. Both algorithms are inspired by well-studied breakpoint search methods for separable convex resource allocation problems. Numerical evaluations on both real and synthetic data confirm the theoretical efficiency of both algorithms and demonstrate their suitability for integration in DEM systems

    On a reduction for a class of resource allocation problems

    Full text link
    In the resource allocation problem (RAP), the goal is to divide a given amount of resource over a set of activities while minimizing the cost of this allocation and possibly satisfying constraints on allocations to subsets of the activities. Most solution approaches for the RAP and its extensions allow each activity to have its own cost function. However, in many applications, often the structure of the objective function is the same for each activity and the difference between the cost functions lies in different parameter choices such as, e.g., the multiplicative factors. In this article, we introduce a new class of objective functions that captures the majority of the objectives occurring in studied applications. These objectives are characterized by a shared structure of the cost function depending on two input parameters. We show that, given the two input parameters, there exists a solution to the RAP that is optimal for any choice of the shared structure. As a consequence, this problem reduces to the quadratic RAP, making available the vast amount of solution approaches and algorithms for the latter problem. We show the impact of our reduction result on several applications and, in particular, we improve the best known worst-case complexity bound of two important problems in vessel routing and processor scheduling from O(n2)O(n^2) to O(nlogn)O(n \log n)
    corecore