93 research outputs found

    Graphs with many strong orientations

    Full text link
    We establish mild conditions under which a possibly irregular, sparse graph GG has "many" strong orientations. Given a graph GG on nn vertices, orient each edge in either direction with probability 1/21/2 independently. We show that if GG satisfies a minimum degree condition of (1+c1)log2n(1+c_1)\log_2{n} and has Cheeger constant at least c2log2log2nlog2nc_2\frac{\log_2\log_2{n}}{\log_2{n}}, then the resulting randomly oriented directed graph is strongly connected with high probability. This Cheeger constant bound can be replaced by an analogous spectral condition via the Cheeger inequality. Additionally, we provide an explicit construction to show our minimum degree condition is tight while the Cheeger constant bound is tight up to a log2log2n\log_2\log_2{n} factor.Comment: 14 pages, 4 figures; revised version includes more background and minor changes that better clarify the expositio

    One-Way Trail Orientations

    Get PDF
    Given a graph, does there exist an orientation of the edges such that the resulting directed graph is strongly connected? Robbins\u27 theorem [Robbins, Am. Math. Monthly, 1939] asserts that such an orientation exists if and only if the graph is 2-edge connected. A natural extension of this problem is the following: Suppose that the edges of the graph are partitioned into trails. Can the trails be oriented consistently such that the resulting directed graph is strongly connected? We show that 2-edge connectivity is again a sufficient condition and we provide a linear time algorithm for finding such an orientation. The generalised Robbins\u27 theorem [Boesch, Am. Math. Monthly, 1980] for mixed multigraphs asserts that the undirected edges of a mixed multigraph can be oriented to make the resulting directed graph strongly connected exactly when the mixed graph is strongly connected and the underlying graph is bridgeless. We consider the natural extension where the undirected edges of a mixed multigraph are partitioned into trails. It turns out that in this case the condition of the generalised Robbin\u27s Theorem is not sufficient. However, we show that as long as each cut either contains at least 2 undirected edges or directed edges in both directions, there exists an orientation of the trails such that the resulting directed graph is strongly connected. Moreover, if the condition is satisfied, we may start by orienting an arbitrary trail in an arbitrary direction. Using this result one obtains a very simple polynomial time algorithm for finding a strong trail orientation if it exists, both in the undirected and the mixed setting

    Enumerating kk-arc-connected orientations

    Get PDF
    12 pagesWe study the problem of enumerating the kk-arc-connected orientations of a graph GG, i.e., generating each exactly once. A first algorithm using submodular flow optimization is easy to state, but intricate to implement. In a second approach we present a simple algorithm with delay O(knm2)O(knm^2) and amortized time O(m2)O(m^2), which improves over the analysis of the submodular flow algorithm. As ingredients, we obtain enumeration algorithms for the α\alpha-orientations of a graph GG in delay O(m2)O(m^2) and for the outdegree sequences attained by kk-arc-connected orientations of GG in delay O(knm2)O(knm^2)

    Approximating Minimum Cost Connectivity Orientation and Augmentation

    Get PDF
    We investigate problems addressing combined connectivity augmentation and orientations settings. We give a polynomial-time 6-approximation algorithm for finding a minimum cost subgraph of an undirected graph GG that admits an orientation covering a nonnegative crossing GG-supermodular demand function, as defined by Frank. An important example is (k,)(k,\ell)-edge-connectivity, a common generalization of global and rooted edge-connectivity. Our algorithm is based on a non-standard application of the iterative rounding method. We observe that the standard linear program with cut constraints is not amenable and use an alternative linear program with partition and co-partition constraints instead. The proof requires a new type of uncrossing technique on partitions and co-partitions. We also consider the problem setting when the cost of an edge can be different for the two possible orientations. The problem becomes substantially more difficult already for the simpler requirement of kk-edge-connectivity. Khanna, Naor, and Shepherd showed that the integrality gap of the natural linear program is at most 44 when k=1k=1 and conjectured that it is constant for all fixed kk. We disprove this conjecture by showing an Ω(V)\Omega(|V|) integrality gap even when k=2k=2
    corecore