129 research outputs found

    Polynomial expansion and sublinear separators

    Full text link
    Let C\mathcal{C} be a class of graphs that is closed under taking subgraphs. We prove that if for some fixed 0<δ10<\delta\le 1, every nn-vertex graph of C\mathcal{C} has a balanced separator of order O(n1δ)O(n^{1-\delta}), then any depth-kk minor (i.e. minor obtained by contracting disjoint subgraphs of radius at most kk) of a graph in C\mathcal{C} has average degree O((k polylog k)1/δ)O\big((k \text{ polylog }k)^{1/\delta}\big). This confirms a conjecture of Dvo\v{r}\'ak and Norin.Comment: 6 pages, no figur

    Crossing Patterns in Nonplanar Road Networks

    Full text link
    We define the crossing graph of a given embedded graph (such as a road network) to be a graph with a vertex for each edge of the embedding, with two crossing graph vertices adjacent when the corresponding two edges of the embedding cross each other. In this paper, we study the sparsity properties of crossing graphs of real-world road networks. We show that, in large road networks (the Urban Road Network Dataset), the crossing graphs have connected components that are primarily trees, and that the remaining non-tree components are typically sparse (technically, that they have bounded degeneracy). We prove theoretically that when an embedded graph has a sparse crossing graph, it has other desirable properties that lead to fast algorithms for shortest paths and other algorithms important in geographic information systems. Notably, these graphs have polynomial expansion, meaning that they and all their subgraphs have small separators.Comment: 9 pages, 4 figures. To appear at the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems(ACM SIGSPATIAL 2017

    Approximation Algorithms for Polynomial-Expansion and Low-Density Graphs

    Full text link
    We study the family of intersection graphs of low density objects in low dimensional Euclidean space. This family is quite general, and includes planar graphs. We prove that such graphs have small separators. Next, we present efficient (1+ε)(1+\varepsilon)-approximation algorithms for these graphs, for Independent Set, Set Cover, and Dominating Set problems, among others. We also prove corresponding hardness of approximation for some of these optimization problems, providing a characterization of their intractability in terms of density

    Notes on Graph Product Structure Theory

    Full text link
    It was recently proved that every planar graph is a subgraph of the strong product of a path and a graph with bounded treewidth. This paper surveys generalisations of this result for graphs on surfaces, minor-closed classes, various non-minor-closed classes, and graph classes with polynomial growth. We then explore how graph product structure might be applicable to more broadly defined graph classes. In particular, we characterise when a graph class defined by a cartesian or strong product has bounded or polynomial expansion. We then explore graph product structure theorems for various geometrically defined graph classes, and present several open problems.Comment: 19 pages, 0 figure
    corecore