25 research outputs found

    Perfectly contractile graphs and quadratic toric rings

    Full text link
    Perfect graphs form one of the distinguished classes of finite simple graphs. In 2006, Chudnovsky, Robertson, Saymour and Thomas proved that a graph is perfect if and only if it has no odd holes and no odd antiholes as induced subgraphs, which was conjectured by Berge. We consider the class A{\mathcal A} of graphs that have no odd holes, no antiholes and no odd stretchers as induced subgraphs. In particular, every graph belonging to A{\mathcal A} is perfect. Everett and Reed conjectured that a graph belongs to A{\mathcal A} if and only if it is perfectly contractile. In the present paper, we discuss graphs belonging to A{\mathcal A} from a viewpoint of commutative algebra. In fact, we conjecture that a perfect graph GG belongs to A{\mathcal A} if and only if the toric ideal of the stable set polytope of GG is generated by quadratic binomials. Especially, we show that this conjecture is true for Meyniel graphs, perfectly orderable graphs, and clique separable graphs, which are perfectly contractile graphs.Comment: 10 page

    Perfect Graphs

    Get PDF
    This chapter is a survey on perfect graphs with an algorithmic flavor. Our emphasis is on important classes of perfect graphs for which there are fast and efficient recognition and optimization algorithms. The classes of graphs we discuss in this chapter are chordal, comparability, interval, perfectly orderable, weakly chordal, perfectly contractile, and chi-bound graphs. For each of these classes, when appropriate, we discuss the complexity of the recognition algorithm and algorithms for finding a minimum coloring, and a largest clique in the graph and its complement

    The Perfect Matching Reconfiguration Problem

    Get PDF
    We study the perfect matching reconfiguration problem: Given two perfect matchings of a graph, is there a sequence of flip operations that transforms one into the other? Here, a flip operation exchanges the edges in an alternating cycle of length four. We are interested in the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem is PSPACE-complete even for split graphs and for bipartite graphs of bounded bandwidth with maximum degree five. We then investigate polynomial-time solvable cases. Specifically, we prove that the problem is solvable in polynomial time for strongly orderable graphs (that include interval graphs and strongly chordal graphs), for outerplanar graphs, and for cographs (also known as P_4-free graphs). Furthermore, for each yes-instance from these graph classes, we show that a linear number of flip operations is sufficient and we can exhibit a corresponding sequence of flip operations in polynomial time

    L(p,q)L(p,q)-Labeling of Graphs with Interval Representations

    Full text link
    We provide upper bounds on the L(p,q)L(p,q)-labeling number of graphs which have interval (or circular-arc) representations via simple greedy algorithms. We prove that there exists an L(p,q)L(p,q)-labeling with span at most max⁥{2(p+q−1)Δ−4q+2,(2p−1)ÎŒ+(2q−1)Δ−2q+1}\max\{2(p+q-1)\Delta-4q+2, (2p-1)\mu+(2q-1)\Delta-2q+1\} for interval kk-graphs, max⁥{p,q}Δ\max\{p,q\}\Delta for interval graphs, max⁥{p,q}Δ+pω\max\{p,q\}\Delta+p\omega for circular arc graphs, 2(p+q−1)Δ−2q+12(p+q-1)\Delta-2q+1 for permutation graphs and (2p−1)Δ+(2q−1)(Ό−1)(2p-1)\Delta+(2q-1)(\mu-1) for cointerval graphs. In particular, these improve existing bounds on L(p,q)L(p,q)-labeling of interval and circular arc graphs and L(2,1)L(2,1)-labeling of permutation graphs. Furthermore, we provide upper bounds on the coloring of the squares of aforementioned classes

    Interval-Like Graphs and Digraphs

    Get PDF
    We unify several seemingly different graph and digraph classes under one umbrella. These classes are all, broadly speaking, different generalizations of interval graphs, and include, in addition to interval graphs, adjusted interval digraphs, threshold graphs, complements of threshold tolerance graphs (known as `co-TT\u27 graphs), bipartite interval containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal ray graphs. (The last three classes coincide, but have been investigated in different contexts.) This common view is made possible by introducing reflexive relationships (loops) into the analysis. We also show that all the above classes are united by a common ordering characterization, the existence of a min ordering. We propose a common generalization of all these graph and digraph classes, namely signed-interval digraphs, and show that they are precisely the digraphs that are characterized by the existence of a min ordering. We also offer an alternative geometric characterization of these digraphs. For most of the above graph and digraph classes, we show that they are exactly those signed-interval digraphs that satisfy a suitable natural restriction on the digraph, like having a loop on every vertex, or having a symmetric edge-set, or being bipartite. For instance, co-TT graphs are precisely those signed-interval digraphs that have each edge symmetric. We also offer some discussion of future work on recognition algorithms and characterizations

    Subject index volumes 1–92

    Get PDF
    corecore