10,432 research outputs found

    LTLf and LDLf Synthesis under Partial Observability

    Get PDF
    In this paper, we study synthesis under partial observability for logical specifications over finite traces expressed in LTLf/LDLf. This form of synthesis can be seen as a generalization of planning under partial observability in nondeterministic domains, which is known to be 2EXPTIME-complete. We start by showing that the usual "belief-state construction" used in planning under partial observability works also for general LTLf/LDLf synthesis, though with a jump in computational complexity from 2EXPTIME to 3EXPTIME. Then we show that the belief-state construction can be avoided in favor of a direct automata construction which exploits projection to hide unobservable propositions. This allow us to prove that the problem remains 2EXPTIME-complete. The new synthesis technique proposed is effective and readily implementable

    A Backward-traversal-based Approach for Symbolic Model Checking of Uniform Strategies for Constrained Reachability

    Full text link
    Since the introduction of Alternating-time Temporal Logic (ATL), many logics have been proposed to reason about different strategic capabilities of the agents of a system. In particular, some logics have been designed to reason about the uniform memoryless strategies of such agents. These strategies are the ones the agents can effectively play by only looking at what they observe from the current state. ATL_ir can be seen as the core logic to reason about such uniform strategies. Nevertheless, its model-checking problem is difficult (it requires a polynomial number of calls to an NP oracle), and practical algorithms to solve it appeared only recently. This paper proposes a technique for model checking uniform memoryless strategies. Existing techniques build the strategies from the states of interest, such as the initial states, through a forward traversal of the system. On the other hand, the proposed approach builds the winning strategies from the target states through a backward traversal, making sure that only uniform strategies are explored. Nevertheless, building the strategies from the ground up limits its applicability to constrained reachability objectives only. This paper describes the approach in details and compares it experimentally with existing approaches implemented into a BDD-based framework. These experiments show that the technique is competitive on the cases it can handle.Comment: In Proceedings GandALF 2017, arXiv:1709.0176

    Observability and Decentralized Control of Fuzzy Discrete Event Systems

    Full text link
    Fuzzy discrete event systems as a generalization of (crisp) discrete event systems have been introduced in order that it is possible to effectively represent uncertainty, imprecision, and vagueness arising from the dynamic of systems. A fuzzy discrete event system has been modelled by a fuzzy automaton; its behavior is described in terms of the fuzzy language generated by the automaton. In this paper, we are concerned with the supervisory control problem for fuzzy discrete event systems with partial observation. Observability, normality, and co-observability of crisp languages are extended to fuzzy languages. It is shown that the observability, together with controllability, of the desired fuzzy language is a necessary and sufficient condition for the existence of a partially observable fuzzy supervisor. When a decentralized solution is desired, it is proved that there exist local fuzzy supervisors if and only if the fuzzy language to be synthesized is controllable and co-observable. Moreover, the infimal controllable and observable fuzzy superlanguage, and the supremal controllable and normal fuzzy sublanguage are also discussed. Simple examples are provided to illustrate the theoretical development.Comment: 14 pages, 1 figure. to be published in the IEEE Transactions on Fuzzy System

    A Gentle Introduction to Epistemic Planning: The DEL Approach

    Get PDF
    Epistemic planning can be used for decision making in multi-agent situations with distributed knowledge and capabilities. Dynamic Epistemic Logic (DEL) has been shown to provide a very natural and expressive framework for epistemic planning. In this paper, we aim to give an accessible introduction to DEL-based epistemic planning. The paper starts with the most classical framework for planning, STRIPS, and then moves towards epistemic planning in a number of smaller steps, where each step is motivated by the need to be able to model more complex planning scenarios.Comment: In Proceedings M4M9 2017, arXiv:1703.0173
    corecore