88,490 research outputs found

    Private Model Compression via Knowledge Distillation

    Full text link
    The soaring demand for intelligent mobile applications calls for deploying powerful deep neural networks (DNNs) on mobile devices. However, the outstanding performance of DNNs notoriously relies on increasingly complex models, which in turn is associated with an increase in computational expense far surpassing mobile devices' capacity. What is worse, app service providers need to collect and utilize a large volume of users' data, which contain sensitive information, to build the sophisticated DNN models. Directly deploying these models on public mobile devices presents prohibitive privacy risk. To benefit from the on-device deep learning without the capacity and privacy concerns, we design a private model compression framework RONA. Following the knowledge distillation paradigm, we jointly use hint learning, distillation learning, and self learning to train a compact and fast neural network. The knowledge distilled from the cumbersome model is adaptively bounded and carefully perturbed to enforce differential privacy. We further propose an elegant query sample selection method to reduce the number of queries and control the privacy loss. A series of empirical evaluations as well as the implementation on an Android mobile device show that RONA can not only compress cumbersome models efficiently but also provide a strong privacy guarantee. For example, on SVHN, when a meaningful (9.83,106)(9.83,10^{-6})-differential privacy is guaranteed, the compact model trained by RONA can obtain 20×\times compression ratio and 19×\times speed-up with merely 0.97% accuracy loss.Comment: Conference version accepted by AAAI'1

    Multiple multimodal mobile devices: Lessons learned from engineering lifelog solutions

    Get PDF
    For lifelogging, or the recording of one’s life history through digital means, to be successful, a range of separate multimodal mobile devices must be employed. These include smartphones such as the N95, the Microsoft SenseCam – a wearable passive photo capture device, or wearable biometric devices. Each collects a facet of the bigger picture, through, for example, personal digital photos, mobile messages and documents access history, but unfortunately, they operate independently and unaware of each other. This creates significant challenges for the practical application of these devices, the use and integration of their data and their operation by a user. In this chapter we discuss the software engineering challenges and their implications for individuals working on integration of data from multiple ubiquitous mobile devices drawing on our experiences working with such technology over the past several years for the development of integrated personal lifelogs. The chapter serves as an engineering guide to those considering working in the domain of lifelogging and more generally to those working with multiple multimodal devices and integration of their data

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges
    corecore