3,036 research outputs found

    On the robustness of learning in games with stochastically perturbed payoff observations

    Get PDF
    Motivated by the scarcity of accurate payoff feedback in practical applications of game theory, we examine a class of learning dynamics where players adjust their choices based on past payoff observations that are subject to noise and random disturbances. First, in the single-player case (corresponding to an agent trying to adapt to an arbitrarily changing environment), we show that the stochastic dynamics under study lead to no regret almost surely, irrespective of the noise level in the player's observations. In the multi-player case, we find that dominated strategies become extinct and we show that strict Nash equilibria are stochastically stable and attracting; conversely, if a state is stable or attracting with positive probability, then it is a Nash equilibrium. Finally, we provide an averaging principle for 2-player games, and we show that in zero-sum games with an interior equilibrium, time averages converge to Nash equilibrium for any noise level.Comment: 36 pages, 4 figure

    Learning the Structure and Parameters of Large-Population Graphical Games from Behavioral Data

    Full text link
    We consider learning, from strictly behavioral data, the structure and parameters of linear influence games (LIGs), a class of parametric graphical games introduced by Irfan and Ortiz (2014). LIGs facilitate causal strategic inference (CSI): Making inferences from causal interventions on stable behavior in strategic settings. Applications include the identification of the most influential individuals in large (social) networks. Such tasks can also support policy-making analysis. Motivated by the computational work on LIGs, we cast the learning problem as maximum-likelihood estimation (MLE) of a generative model defined by pure-strategy Nash equilibria (PSNE). Our simple formulation uncovers the fundamental interplay between goodness-of-fit and model complexity: good models capture equilibrium behavior within the data while controlling the true number of equilibria, including those unobserved. We provide a generalization bound establishing the sample complexity for MLE in our framework. We propose several algorithms including convex loss minimization (CLM) and sigmoidal approximations. We prove that the number of exact PSNE in LIGs is small, with high probability; thus, CLM is sound. We illustrate our approach on synthetic data and real-world U.S. congressional voting records. We briefly discuss our learning framework's generality and potential applicability to general graphical games.Comment: Journal of Machine Learning Research. (accepted, pending publication.) Last conference version: submitted March 30, 2012 to UAI 2012. First conference version: entitled, Learning Influence Games, initially submitted on June 1, 2010 to NIPS 201
    • …
    corecore