594 research outputs found

    Behavioural equivalences for timed systems

    Full text link
    Timed transition systems are behavioural models that include an explicit treatment of time flow and are used to formalise the semantics of several foundational process calculi and automata. Despite their relevance, a general mathematical characterisation of timed transition systems and their behavioural theory is still missing. We introduce the first uniform framework for timed behavioural models that encompasses known behavioural equivalences such as timed bisimulations, timed language equivalences as well as their weak and time-abstract counterparts. All these notions of equivalences are naturally organised by their discriminating power in a spectrum. We prove that this result does not depend on the type of the systems under scrutiny: it holds for any generalisation of timed transition system. We instantiate our framework to timed transition systems and their quantitative extensions such as timed probabilistic systems

    On the Ergodic Properties of Certain Additive Cellular Automata over ZmZ_{m}

    Full text link
    In this paper, we investigate some ergodic properties of Z2Z^{2}-actions Tp,nT_{p,n} generated by an additive cellular automata and shift acting on the space of all doubly -infinitive sequences taking values in ZmZ_{m}.Comment: 5 pag

    Conjugacy of one-dimensional one-sided cellular automata is undecidable

    Full text link
    Two cellular automata are strongly conjugate if there exists a shift-commuting conjugacy between them. We prove that the following two sets of pairs (F,G)(F,G) of one-dimensional one-sided cellular automata over a full shift are recursively inseparable: (i) pairs where FF has strictly larger topological entropy than GG, and (ii) pairs that are strongly conjugate and have zero topological entropy. Because there is no factor map from a lower entropy system to a higher entropy one, and there is no embedding of a higher entropy system into a lower entropy system, we also get as corollaries that the following decision problems are undecidable: Given two one-dimensional one-sided cellular automata FF and GG over a full shift: Are FF and GG conjugate? Is FF a factor of GG? Is FF a subsystem of GG? All of these are undecidable in both strong and weak variants (whether the homomorphism is required to commute with the shift or not, respectively). It also immediately follows that these results hold for one-dimensional two-sided cellular automata.Comment: 12 pages, 2 figures, accepted for SOFSEM 201

    Undecidable Properties of Limit Set Dynamics of Cellular Automata

    Get PDF
    Cellular Automata (CA) are discrete dynamical systems and an abstract model of parallel computation. The limit set of a cellular automaton is its maximal topological attractor. A well know result, due to Kari, says that all nontrivial properties of limit sets are undecidable. In this paper we consider properties of limit set dynamics, i.e. properties of the dynamics of Cellular Automata restricted to their limit sets. There can be no equivalent of Kari's Theorem for limit set dynamics. Anyway we show that there is a large class of undecidable properties of limit set dynamics, namely all properties of limit set dynamics which imply stability or the existence of a unique subshift attractor. As a consequence we have that it is undecidable whether the cellular automaton map restricted to the limit set is the identity, closing, injective, expansive, positively expansive, transitive

    Combinatorial models of expanding dynamical systems

    Full text link
    We define iterated monodromy groups of more general structures than partial self-covering. This generalization makes it possible to define a natural notion of a combinatorial model of an expanding dynamical system. We prove that a naturally defined "Julia set" of the generalized dynamical systems depends only on the associated iterated monodromy group. We show then that the Julia set of every expanding dynamical system is an inverse limit of simplicial complexes constructed by inductive cut-and-paste rules.Comment: The new version differs substantially from the first one. Many parts are moved to other (mostly future) papers, the main open question of the first version is solve

    COMPUTER SIMULATION AND COMPUTABILITY OF BIOLOGICAL SYSTEMS

    Get PDF
    The ability to simulate a biological organism by employing a computer is related to the ability of the computer to calculate the behavior of such a dynamical system, or the "computability" of the system.* However, the two questions of computability and simulation are not equivalent. Since the question of computability can be given a precise answer in terms of recursive functions, automata theory and dynamical systems, it will be appropriate to consider it first. The more elusive question of adequate simulation of biological systems by a computer will be then addressed and a possible connection between the two answers given will be considered. A conjecture is formulated that suggests the possibility of employing an algebraic-topological, "quantum" computer (Baianu, 1971b) for analogous and symbolic simulations of biological systems that may include chaotic processes that are not, in genral, either recursively or digitally computable. Depending on the biological network being modelled, such as the Human Genome/Cell Interactome or a trillion-cell Cognitive Neural Network system, the appropriate logical structure for such simulations might be either the Quantum MV-Logic (QMV) discussed in recent publications (Chiara, 2004, and references cited therein)or Lukasiewicz Logic Algebras that were shown to be isomorphic to MV-logic algebras (Georgescu et al, 2001)
    • …
    corecore