262 research outputs found

    A Viscosity Hybrid Steepest Descent Method for Generalized Mixed Equilibrium Problems and Variational Inequalities for Relaxed Cocoercive Mapping in Hilbert Spaces

    Get PDF
    We present an iterative method for fixed point problems, generalized mixed equilibrium problems, and variational inequality problems. Our method is based on the so-called viscosity hybrid steepest descent method. Using this method, we can find the common element of the set of fixed points of a nonexpansive mapping, the set of solutions of generalized mixed equilibrium problems, and the set of solutions of variational inequality problems for a relaxed cocoercive mapping in a real Hilbert space. Then, we prove the strong convergence of the proposed iterative scheme to the unique solution of variational inequality. The results presented in this paper generalize and extend some well-known strong convergence theorems in the literature

    Dynamical systems and forward-backward algorithms associated with the sum of a convex subdifferential and a monotone cocoercive operator

    Full text link
    In a Hilbert framework, we introduce continuous and discrete dynamical systems which aim at solving inclusions governed by structured monotone operators A=Φ+BA=\partial\Phi+B, where Φ\partial\Phi is the subdifferential of a convex lower semicontinuous function Φ\Phi, and BB is a monotone cocoercive operator. We first consider the extension to this setting of the regularized Newton dynamic with two potentials. Then, we revisit some related dynamical systems, namely the semigroup of contractions generated by AA, and the continuous gradient projection dynamic. By a Lyapunov analysis, we show the convergence properties of the orbits of these systems. The time discretization of these dynamics gives various forward-backward splitting methods (some new) for solving structured monotone inclusions involving non-potential terms. The convergence of these algorithms is obtained under classical step size limitation. Perspectives are given in the field of numerical splitting methods for optimization, and multi-criteria decision processes.Comment: 25 page

    Hybrid Algorithms for Solving Variational Inequalities, Variational Inclusions, Mixed Equilibria, and Fixed Point Problems

    Get PDF
    We present a hybrid iterative algorithm for finding a common element of the set of solutions of a finite family of generalized mixed equilibrium problems, the set of solutions of a finite family of variational inequalities for inverse strong monotone mappings, the set of fixed points of an infinite family of nonexpansive mappings, and the set of solutions of a variational inclusion in a real Hilbert space. Furthermore, we prove that the proposed hybrid iterative algorithm has strong convergence under some mild conditions imposed on algorithm parameters. Here, our hybrid algorithm is based on Korpelevič’s extragradient method, hybrid steepest-descent method, and viscosity approximation method

    Triple Hierarchical Variational Inequalities with Constraints of Mixed Equilibria, Variational Inequalities, Convex Minimization, and Hierarchical Fixed Point Problems

    Get PDF
    We introduce and analyze a hybrid iterative algorithm by virtue of Korpelevich's extragradient method, viscosity approximation method, hybrid steepest-descent method, and averaged mapping approach to the gradient-projection algorithm. It is proven that under appropriate assumptions, the proposed algorithm converges strongly to a common element of the fixed point set of infinitely many nonexpansive mappings, the solution set of finitely many generalized mixed equilibrium problems (GMEPs), the solution set of finitely many variational inequality problems (VIPs), the solution set of general system of variational inequalities (GSVI), and the set of minimizers of convex minimization problem (CMP), which is just a unique solution of a triple hierarchical variational inequality (THVI) in a real Hilbert space. In addition, we also consider the application of the proposed algorithm to solve a hierarchical fixed point problem with constraints of finitely many GMEPs, finitely many VIPs, GSVI, and CMP. The results obtained in this paper improve and extend the corresponding results announced by many others
    corecore