3,936 research outputs found

    Strong convergence rates for backward Eulerā€“Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients

    Get PDF
    In this work, we generalize the current theory of strong convergence rates for the backward Eulerā€“Maruyama scheme for highly non-linear stochastic differential equations, which appear in both mathematical finance and bio-mathematics. More precisely, we show that under a dissipative condition on the drift coefficient and superlinear growth condition on the diffusion coefficient the BEM scheme converges with strong order of a half. This type of convergence gives theoretical foundations for efficient variance reduction techniques for Monte Carlo simulations. We support our theoretical results with relevant examples, such as stochastic population models and stochastic volatility models

    Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

    Get PDF
    We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and non-Lipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examine the globally almost surely asymptotic stability in this non-linear setting for EM type schemes. In particular, we present a stochastic counterpart of the discrete LaSalle principle from which we deduce stability properties for numerical methods

    Structure preserving stochastic Galerkin methods for Fokker-Planck equations with background interactions

    Full text link
    This paper is devoted to the construction of structure preserving stochastic Galerkin schemes for Fokker-Planck type equations with uncertainties and interacting with an external distribution, that we refer to as a background distribution. The proposed methods are capable to preserve physical properties in the approximation of statistical moments of the problem like nonnegativity, entropy dissipation and asymptotic behaviour of the expected solution. The introduced methods are second order accurate in the transient regimes and high order for large times. We present applications of the developed schemes to the case of fixed and dynamic background distribution for models of collective behaviour

    Non-intrusive and structure preserving multiscale integration of stiff ODEs, SDEs and Hamiltonian systems with hidden slow dynamics via flow averaging

    Get PDF
    We introduce a new class of integrators for stiff ODEs as well as SDEs. These integrators are (i) {\it Multiscale}: they are based on flow averaging and so do not fully resolve the fast variables and have a computational cost determined by slow variables (ii) {\it Versatile}: the method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables (iii) {\it Nonintrusive}: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale (iv) {\it Convergent over two scales}: strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology (v) {\it Structure preserving}: for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi-Pasta-Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible and Boltzmann-Gibbs reversible, quasi-symplectic on all variables and conformally symplectic with isotropic friction.Comment: 69 pages, 21 figure

    Stochastic ordinary differential equations in applied and computational mathematics

    Get PDF
    Using concrete examples, we discuss the current and potential use of stochastic ordinary differential equations (SDEs) from the perspective of applied and computational mathematics. Assuming only a minimal background knowledge in probability and stochastic processes, we focus on aspects that distinguish SDEs from their deterministic counterparts. To illustrate a multiscale modelling framework, we explain how SDEs arise naturally as diffusion limits in the type of discrete-valued stochastic models used in chemical kinetics, population dynamics, and, most topically, systems biology. We outline some key issues in existence, uniqueness and stability that arise when SDEs are used as physical models, and point out possible pitfalls. We also discuss the use of numerical methods to simulate trajectories of an SDE and explain how both weak and strong convergence properties are relevant for highly-efficient multilevel Monte Carlo simulations. We flag up what we believe to be key topics for future research, focussing especially on nonlinear models, parameter estimation, model comparison and multiscale simulation

    Mathematical control of complex systems

    Get PDF
    Copyright Ā© 2013 ZidongWang et al.This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
    • ā€¦
    corecore