3,728 research outputs found

    Interval-valued algebras and fuzzy logics

    Get PDF
    In this chapter, we present a propositional calculus for several interval-valued fuzzy logics, i.e., logics having intervals as truth values. More precisely, the truth values are preferably subintervals of the unit interval. The idea behind it is that such an interval can model imprecise information. To compute the truth values of ‘p implies q’ and ‘p and q’, given the truth values of p and q, we use operations from residuated lattices. This truth-functional approach is similar to the methods developed for the well-studied fuzzy logics. Although the interpretation of the intervals as truth values expressing some kind of imprecision is a bit problematic, the purely mathematical study of the properties of interval-valued fuzzy logics and their algebraic semantics can be done without any problem. This study is the focus of this chapter

    Completion of Choice

    Full text link
    We systematically study the completion of choice problems in the Weihrauch lattice. Choice problems play a pivotal role in Weihrauch complexity. For one, they can be used as landmarks that characterize important equivalences classes in the Weihrauch lattice. On the other hand, choice problems also characterize several natural classes of computable problems, such as finite mind change computable problems, non-deterministically computable problems, Las Vegas computable problems and effectively Borel measurable functions. The closure operator of completion generates the concept of total Weihrauch reducibility, which is a variant of Weihrauch reducibility with total realizers. Logically speaking, the completion of a problem is a version of the problem that is independent of its premise. Hence, studying the completion of choice problems allows us to study simultaneously choice problems in the total Weihrauch lattice, as well as the question which choice problems can be made independent of their premises in the usual Weihrauch lattice. The outcome shows that many important choice problems that are related to compact spaces are complete, whereas choice problems for unbounded spaces or closed sets of positive measure are typically not complete.Comment: 30 page

    Lukasiewicz logic and Riesz spaces

    Full text link
    We initiate a deep study of {\em Riesz MV-algebras} which are MV-algebras endowed with a scalar multiplication with scalars from [0,1][0,1]. Extending Mundici's equivalence between MV-algebras and \ell-groups, we prove that Riesz MV-algebras are categorically equivalent with unit intervals in Riesz spaces with strong unit. Moreover, the subclass of norm-complete Riesz MV-algebras is equivalent with the class of commutative unital C^*-algebras. The propositional calculus RL{\mathbb R}{\cal L} that has Riesz MV-algebras as models is a conservative extension of \L ukasiewicz \infty-valued propositional calculus and it is complete with respect to evaluations in the standard model [0,1][0,1]. We prove a normal form theorem for this logic, extending McNaughton theorem for \L ukasiewicz logic. We define the notions of quasi-linear combination and quasi-linear span for formulas in RL{\mathbb R}{\cal L} and we relate them with the analogue of de Finetti's coherence criterion for RL{\mathbb R}{\cal L}.Comment: To appear in Soft Computin

    A note on drastic product logic

    Full text link
    The drastic product D*_D is known to be the smallest tt-norm, since xDy=0x *_D y = 0 whenever x,y<1x, y < 1. This tt-norm is not left-continuous, and hence it does not admit a residuum. So, there are no drastic product tt-norm based many-valued logics, in the sense of [EG01]. However, if we renounce standard completeness, we can study the logic whose semantics is provided by those MTL chains whose monoidal operation is the drastic product. This logic is called S3MTL{\rm S}_{3}{\rm MTL} in [NOG06]. In this note we justify the study of this logic, which we rechristen DP (for drastic product), by means of some interesting properties relating DP and its algebraic semantics to a weakened law of excluded middle, to the Δ\Delta projection operator and to discriminator varieties. We shall show that the category of finite DP-algebras is dually equivalent to a category whose objects are multisets of finite chains. This duality allows us to classify all axiomatic extensions of DP, and to compute the free finitely generated DP-algebras.Comment: 11 pages, 3 figure
    corecore